Prediction of noise generated by rod-airfoil configuration: An investigation based on experiments and machine learning

Eyup Kocak, Ece Ayli
{"title":"Prediction of noise generated by rod-airfoil configuration: An investigation based on experiments and machine learning","authors":"Eyup Kocak, Ece Ayli","doi":"10.1177/09544100241274508","DOIUrl":null,"url":null,"abstract":"This study investigated the effects of various parameters on the SPL (Sound Pressure Level) levels of rod-airfoil configurations. An experimental study was performed to investigate the effects of the rod parameters, such as the configuration of the rod, the distance between the rod and the airfoil, the diameter effect of the rod, and the geometry of the rod, on the performance of the rod-airfoil configuration. An Artificial Neural Network (ANN) model was then developed and applied to accurately predict the SPL of rod-airfoil configurations. The results of the study revealed that the Levenberg-Marquardt (LM) algorithm with 2 hidden neurons produced the best performance in predicting the SPL level, with a training R-squared value of 0.9998 and a testing R-squared value of 0.998715. The findings also indicated that increasing rod diameter increases sound pressure level while reducing gap width increases SPL levels and decreases frequency values. This method offers a more precise and effective technique to forecast the SPL levels of rod-airfoil designs, allowing designers to enhance their creations and lower noise levels. The findings of this study can also be utilized to direct future research in this area and offer important information for a better understanding of the mechanism of rod-airfoil noise creation. To the best of the authors’ knowledge, this is the first study to look into rod-airfoil design predictions made using machine learning approaches.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"49 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241274508","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the effects of various parameters on the SPL (Sound Pressure Level) levels of rod-airfoil configurations. An experimental study was performed to investigate the effects of the rod parameters, such as the configuration of the rod, the distance between the rod and the airfoil, the diameter effect of the rod, and the geometry of the rod, on the performance of the rod-airfoil configuration. An Artificial Neural Network (ANN) model was then developed and applied to accurately predict the SPL of rod-airfoil configurations. The results of the study revealed that the Levenberg-Marquardt (LM) algorithm with 2 hidden neurons produced the best performance in predicting the SPL level, with a training R-squared value of 0.9998 and a testing R-squared value of 0.998715. The findings also indicated that increasing rod diameter increases sound pressure level while reducing gap width increases SPL levels and decreases frequency values. This method offers a more precise and effective technique to forecast the SPL levels of rod-airfoil designs, allowing designers to enhance their creations and lower noise levels. The findings of this study can also be utilized to direct future research in this area and offer important information for a better understanding of the mechanism of rod-airfoil noise creation. To the best of the authors’ knowledge, this is the first study to look into rod-airfoil design predictions made using machine learning approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测杆翼配置产生的噪音:基于实验和机器学习的研究
本研究调查了各种参数对杆-翼面配置的 SPL(声压级)水平的影响。通过实验研究了杆参数对杆-翼面配置性能的影响,如杆的配置、杆与翼面之间的距离、杆的直径效应和杆的几何形状。然后开发了一个人工神经网络(ANN)模型,并将其应用于精确预测杆-翼面配置的声压级。研究结果表明,带有 2 个隐藏神经元的 Levenberg-Marquardt 算法在预测 SPL 水平方面表现最佳,其训练 R 平方值为 0.9998,测试 R 平方值为 0.998715。研究结果还表明,增大杆直径会提高声压级,而减小间隙宽度会提高声压级并降低频率值。这种方法提供了一种更精确、更有效的技术来预测杆式气翼设计的声压级水平,使设计人员能够改进其设计并降低噪音水平。本研究的结果还可用于指导该领域的未来研究,并为更好地理解杆状气流产生噪声的机理提供重要信息。据作者所知,这是第一项利用机器学习方法研究杆状风翼设计预测的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
212
审稿时长
5.7 months
期刊介绍: The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience. "The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Fatigue life analysis of a composite materials structure using allowable strain criteria Feasibility study of carbon-fiber reinforced polymer linerless pressure vessel tank Testability modeling of aeroengine and analysis optimization method based on improved correlation matrix Research on a backstepping flight control method improved by STFT in atmospheric disturbance applications Evaluating the effect of frigate hangar shape modifications on helicopter recovery using piloted flight simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1