{"title":"Design and workspace analysis of a cable-driven space capture robot for noncooperative targets","authors":"Ruiwei Liu, Yating Fan, Yantong Huang, Hongwei Guo, Chong Zhao, Manjia Su","doi":"10.1177/09544100241272826","DOIUrl":null,"url":null,"abstract":"Capturing noncooperative targets in space has garnered continuous research interest in aerospace applications. This study addresses the demands of large-scale, multifaceted activities and varied working conditions for space capture missions by designing a space capture robot composed of multiple cable-driven manipulators operating in parallel. First, single- and multi-segment cable-driven robot models were designed, and a geometric model was subsequently built. The optimal number of segments was determined by analysing the condition number of a Jacobian matrix using the Monte Carlo method. Subsequently, based on the constant-curvature assumption, a kinematic model of the cable-driven space capture robot was formulated, and capture methods for different capture targets were designed using the Monte Carlo method. Finally, an eight-segment cable-driven robot prototype was developed, and compliance and driving experiments were conducted. This robot exhibits promising application potential for space noncooperative target capture and can be feasibly manufactured using on-orbit 3D machining technology.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"177 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241272826","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Capturing noncooperative targets in space has garnered continuous research interest in aerospace applications. This study addresses the demands of large-scale, multifaceted activities and varied working conditions for space capture missions by designing a space capture robot composed of multiple cable-driven manipulators operating in parallel. First, single- and multi-segment cable-driven robot models were designed, and a geometric model was subsequently built. The optimal number of segments was determined by analysing the condition number of a Jacobian matrix using the Monte Carlo method. Subsequently, based on the constant-curvature assumption, a kinematic model of the cable-driven space capture robot was formulated, and capture methods for different capture targets were designed using the Monte Carlo method. Finally, an eight-segment cable-driven robot prototype was developed, and compliance and driving experiments were conducted. This robot exhibits promising application potential for space noncooperative target capture and can be feasibly manufactured using on-orbit 3D machining technology.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).