Multi-Messenger Connection in High-Energy Neutrino Astronomy

IF 2.5 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Universe Pub Date : 2024-08-13 DOI:10.3390/universe10080326
Ankur Sharma
{"title":"Multi-Messenger Connection in High-Energy Neutrino Astronomy","authors":"Ankur Sharma","doi":"10.3390/universe10080326","DOIUrl":null,"url":null,"abstract":"Low fluxes of astrophysical neutrinos at TeV energies, and the overwhelming background of atmospheric neutrinos below that, render the current paradigm of neutrino astronomy a severely statistics-limited one. While many hints have emerged, all the evidence gathered by IceCube and ANTARES, over the course of almost a decade and a half of operation, has fallen short of providing any conclusive answer to the puzzle of the origin of high-energy cosmic rays and neutrinos. The advancement of the field is thus closely associated with not only the neutrino observatories coming online in the next few years, but also on the coordinated efforts of the EM, GW and cosmic ray communities to develop dedicated channels and infrastructure that allow for the swift and comprehensive multi-messenger follow-up of relevant events detected in any of these sectors. This paper highlights the strides that have been already taken in that direction and the fruits that they have borne, as well as the challenges that lie ahead.","PeriodicalId":48646,"journal":{"name":"Universe","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universe","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/universe10080326","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Low fluxes of astrophysical neutrinos at TeV energies, and the overwhelming background of atmospheric neutrinos below that, render the current paradigm of neutrino astronomy a severely statistics-limited one. While many hints have emerged, all the evidence gathered by IceCube and ANTARES, over the course of almost a decade and a half of operation, has fallen short of providing any conclusive answer to the puzzle of the origin of high-energy cosmic rays and neutrinos. The advancement of the field is thus closely associated with not only the neutrino observatories coming online in the next few years, but also on the coordinated efforts of the EM, GW and cosmic ray communities to develop dedicated channels and infrastructure that allow for the swift and comprehensive multi-messenger follow-up of relevant events detected in any of these sectors. This paper highlights the strides that have been already taken in that direction and the fruits that they have borne, as well as the challenges that lie ahead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高能中微子天文学中的多信使联系
TeV能量下的天体物理中微子通量很低,而在TeV能量以下的大气中微子背景压倒一切,这使得当前的中微子天文学范式受到了严重的统计限制。虽然已经出现了许多蛛丝马迹,但在冰立方和 ANTARES 近十五年的运行过程中收集到的所有证据都不足以为高能宇宙射线和中微子的起源之谜提供任何确凿的答案。因此,这一领域的进步不仅与未来几年即将上线的中微子天文台密切相关,而且还与电磁、高能宇宙线和宇宙射线界的协调努力密切相关,即开发专用通道和基础设施,以便对在上述任何领域探测到的相关事件进行迅速和全面的多信使跟踪。本文重点介绍在这方面已经取得的进展和成果,以及今后面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Universe
Universe Physics and Astronomy-General Physics and Astronomy
CiteScore
4.30
自引率
17.20%
发文量
562
审稿时长
24.38 days
期刊介绍: Universe (ISSN 2218-1997) is an international peer-reviewed open access journal focused on fundamental principles in physics. It publishes reviews, research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their research results in as much detail as possible. There is no restriction on the length of the papers.
期刊最新文献
Constraints on Metastable Dark Energy Decaying into Dark Matter Quantum Field Theory of Black Hole Perturbations with Backreaction: I General Framework Bayesian Knowledge Infusion for Studying Historical Sunspot Numbers Predicting Solar Cycles with a Parametric Time Series Model Comparing Analytic and Numerical Studies of Tensor Perturbations in Loop Quantum Cosmology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1