Structural transitions of a semi-flexible polyampholyte

Rakesh Palariya, Sunil P. Singh
{"title":"Structural transitions of a semi-flexible polyampholyte","authors":"Rakesh Palariya, Sunil P. Singh","doi":"10.1063/5.0219070","DOIUrl":null,"url":null,"abstract":"Polyampholytes (PAs) are charged polymers composed of positively and negatively charged monomers along their backbone. The sequence of the charged monomers and the bending of the chain significantly influence the conformation and dynamical behavior of the PA. Using coarse-grained molecular dynamics simulations, we comprehensively study the structural and dynamical properties of flexible and semi-flexible PAs. The simulation results demonstrate a flexible PA chain, displaying a transition from a coil to a globule in the parameter space of the charge sequence. In addition, the behavior of the mean-square displacement (MSD), denoted as ⟨(Δr(t))2⟩, reveals distinct dynamics, specifically for the alternating and charge-segregated sequences. The MSD follows a power-law behavior, where ⟨(Δr(t))2⟩ ∼ tβ, with β ≈ 3/5 and β ≈ 1/2 for the alternating sequence and the charge-segregated sequence in the absence of hydrodynamic interactions, respectively. However, when hydrodynamic interactions are incorporated, the exponent β shifts to ∼3/5 for the charge-segregated sequence and 2/3 for the well-mixed alternating sequence. For a semi-flexible PA chain, varying the bending rigidity and electrostatic interaction strength (Γe) leads to distinct, fascinating conformational states, including globule, bundle, and torus-like conformations. We show that PAs acquire circular and hairpin-like conformations in the intermediate bending regime. The transition between various conformations is identified in terms of the shape factor estimated from the ratios of eigenvalues of the gyration tensor.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0219070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polyampholytes (PAs) are charged polymers composed of positively and negatively charged monomers along their backbone. The sequence of the charged monomers and the bending of the chain significantly influence the conformation and dynamical behavior of the PA. Using coarse-grained molecular dynamics simulations, we comprehensively study the structural and dynamical properties of flexible and semi-flexible PAs. The simulation results demonstrate a flexible PA chain, displaying a transition from a coil to a globule in the parameter space of the charge sequence. In addition, the behavior of the mean-square displacement (MSD), denoted as ⟨(Δr(t))2⟩, reveals distinct dynamics, specifically for the alternating and charge-segregated sequences. The MSD follows a power-law behavior, where ⟨(Δr(t))2⟩ ∼ tβ, with β ≈ 3/5 and β ≈ 1/2 for the alternating sequence and the charge-segregated sequence in the absence of hydrodynamic interactions, respectively. However, when hydrodynamic interactions are incorporated, the exponent β shifts to ∼3/5 for the charge-segregated sequence and 2/3 for the well-mixed alternating sequence. For a semi-flexible PA chain, varying the bending rigidity and electrostatic interaction strength (Γe) leads to distinct, fascinating conformational states, including globule, bundle, and torus-like conformations. We show that PAs acquire circular and hairpin-like conformations in the intermediate bending regime. The transition between various conformations is identified in terms of the shape factor estimated from the ratios of eigenvalues of the gyration tensor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半柔性聚酰胺的结构转变
聚阴离子(PA)是由带正电和负电的单体沿主干组成的带电聚合物。带电单体的序列和链的弯曲对 PA 的构象和动力学行为有重大影响。利用粗粒度分子动力学模拟,我们全面研究了柔性和半柔性 PA 的结构和动力学特性。模拟结果表明,柔性 PA 链在电荷序列的参数空间中显示出从线圈到球状的过渡。此外,均方位移(MSD)(表示为⟨(Δr(t))2⟩)的行为揭示了不同的动态,特别是交替序列和电荷分离序列。MSD 遵循幂律行为,其中⟨(Δr(t))2⟩∼tβ,在没有流体动力学相互作用的情况下,交替序列和电荷隔离序列分别为 β≈ 3/5 和 β≈ 1/2。然而,当加入流体动力学相互作用时,电荷隔离序列的指数 β 变为 ∼3/5,混合良好的交替序列的指数 β 变为 2/3。对于半柔性 PA 链,改变弯曲刚度和静电相互作用强度(Γe)会导致不同的迷人构象状态,包括球状、束状和环状构象。我们的研究表明,在中间弯曲机制下,PA 可获得环状和发夹状构象。根据回旋张量特征值的比率估算出的形状因子确定了各种构象之间的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Substitutional Cu doping at the cation sites in Ba2YNbO6 toward improved visible-light photoactivity—A first-principles HSE06 study GW with hybrid functionals for large molecular systems Classical and quantum thermodynamics in a non-equilibrium regime: Application to thermostatic Stirling engine Thermodynamic quantum Fokker–Planck equations and their application to thermostatic Stirling engine The “simple” photochemistry of thiophene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1