Structural transitions in liquid semiconductor alloys: A molecular dynamics study with a neural network potential

Yi-Bin Fang, Cheng Shang, Zhi-Pan Liu, Xin-Gao Gong
{"title":"Structural transitions in liquid semiconductor alloys: A molecular dynamics study with a neural network potential","authors":"Yi-Bin Fang, Cheng Shang, Zhi-Pan Liu, Xin-Gao Gong","doi":"10.1063/5.0223453","DOIUrl":null,"url":null,"abstract":"Liquid–liquid phase transitions hold a unique and profound significance within condensed matter physics. These transitions, while conceptually intriguing, often pose formidable computational challenges. However, recent advances in neural network (NN) potentials offer a promising avenue to effectively address these challenges. In this paper, we delve into the structural transitions of liquid CdTe, CdS, and their alloy systems using molecular dynamics simulations, harnessing the power of an NN potential named LaspNN. Our investigations encompass both pressure and temperature effects. Through our simulations, we uncover three primary liquid structures around melting points that emerge as pressure increases: tetrahedral, rock salt, and close-packed structures, which greatly resemble those of solid states. In the high-temperature regime, we observe the formation of Te chains and S dimers, providing a deeper understanding of the liquid’s atomic arrangements. When examining CdSxTe1−x alloys, our findings indicate that a small substitution of S by Te atoms for S-rich alloys (x > 0.5) exhibits a structural transition much different from CdS, while a large substitution of Te by S atoms for Te-rich alloys (x < 0.5) barely exhibits a structural transition similar to CdTe. We construct a schematic diagram for liquid alloys that considers both temperature and pressure, providing a comprehensive overview of the alloy system’s behavior. The local aggregation of Te atoms demonstrates a linear relationship with alloy composition x, whereas that of S atoms exhibits a nonlinear one, shedding light on the composition-dependent structural changes.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0223453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid–liquid phase transitions hold a unique and profound significance within condensed matter physics. These transitions, while conceptually intriguing, often pose formidable computational challenges. However, recent advances in neural network (NN) potentials offer a promising avenue to effectively address these challenges. In this paper, we delve into the structural transitions of liquid CdTe, CdS, and their alloy systems using molecular dynamics simulations, harnessing the power of an NN potential named LaspNN. Our investigations encompass both pressure and temperature effects. Through our simulations, we uncover three primary liquid structures around melting points that emerge as pressure increases: tetrahedral, rock salt, and close-packed structures, which greatly resemble those of solid states. In the high-temperature regime, we observe the formation of Te chains and S dimers, providing a deeper understanding of the liquid’s atomic arrangements. When examining CdSxTe1−x alloys, our findings indicate that a small substitution of S by Te atoms for S-rich alloys (x > 0.5) exhibits a structural transition much different from CdS, while a large substitution of Te by S atoms for Te-rich alloys (x < 0.5) barely exhibits a structural transition similar to CdTe. We construct a schematic diagram for liquid alloys that considers both temperature and pressure, providing a comprehensive overview of the alloy system’s behavior. The local aggregation of Te atoms demonstrates a linear relationship with alloy composition x, whereas that of S atoms exhibits a nonlinear one, shedding light on the composition-dependent structural changes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
液态半导体合金的结构转变:采用神经网络势能的分子动力学研究
液-液相变在凝聚态物理学中具有独特而深远的意义。这些跃迁虽然在概念上引人入胜,但往往给计算带来巨大挑战。然而,神经网络(NN)势能的最新进展为有效应对这些挑战提供了一条大有可为的途径。在本文中,我们利用名为 LaspNN 的神经网络势,通过分子动力学模拟深入研究了液态碲镉、硒化镉及其合金体系的结构转变。我们的研究涵盖了压力和温度效应。通过模拟,我们在熔点附近发现了三种主要的液体结构,它们随着压力的增加而出现:四面体结构、岩盐结构和紧密堆积结构,这些结构与固态结构非常相似。在高温条件下,我们观察到 Te 链和 S 二聚体的形成,从而加深了对液体原子排列的理解。在研究 CdSxTe1-x 合金时,我们的研究结果表明,在富含 S 原子的合金(x > 0.5)中,S 原子被 Te 原子少量取代,会出现与 CdS 截然不同的结构转变;而在富含 Te 原子的合金(x < 0.5)中,Te 原子被 S 原子大量取代,几乎不会出现与 CdTe 相似的结构转变。我们构建了一个同时考虑温度和压力的液态合金示意图,为合金体系的行为提供了一个全面的概览。Te 原子的局部聚集与合金成分 x 呈线性关系,而 S 原子的局部聚集与合金成分 x 呈非线性关系,从而揭示了与成分相关的结构变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Substitutional Cu doping at the cation sites in Ba2YNbO6 toward improved visible-light photoactivity—A first-principles HSE06 study GW with hybrid functionals for large molecular systems Classical and quantum thermodynamics in a non-equilibrium regime: Application to thermostatic Stirling engine Thermodynamic quantum Fokker–Planck equations and their application to thermostatic Stirling engine The “simple” photochemistry of thiophene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1