Protocols for trainable and differentiable quantum generative modeling

Oleksandr Kyriienko, Annie E. Paine, Vincent E. Elfving
{"title":"Protocols for trainable and differentiable quantum generative modeling","authors":"Oleksandr Kyriienko, Annie E. Paine, Vincent E. Elfving","doi":"10.1103/physrevresearch.6.033291","DOIUrl":null,"url":null,"abstract":"We propose an approach for learning probability distributions as differentiable quantum circuits (DQC) that enable efficient quantum generative modeling (QGM) and synthetic data generation. Contrary to existing QGM approaches, we perform training of a DQC-based model, where data is encoded in a latent space with the proposed phase feature map of exponential capacity. This is followed by a trainable quantum circuit, forming the model. We then map the trained model to the bit basis using a fixed unitary transformation, in this case corresponding to a quantum Fourier transform circuit. It allows fast sampling from parametrized distributions using a single-shot readout. Importantly, latent space training provides models that are automatically differentiable, and we show how samples from solutions of stochastic differential equations (SDEs) can be accessed by solving stationary and time-dependent Fokker-Planck equations with a quantum protocol. Our approach opens a route to multidimensional generative modeling with qubit registers explicitly correlated via a (fixed) entangling layer. In this case quantum computers can offer advantage as efficient samplers, which perform complex inverse transform sampling enabled by the fundamental laws of quantum mechanics. On a technical side the advances are multiple, as we introduce the phase feature map, analyze its properties, and develop frequency-taming techniques that include qubitwise training and feature map sparsification.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an approach for learning probability distributions as differentiable quantum circuits (DQC) that enable efficient quantum generative modeling (QGM) and synthetic data generation. Contrary to existing QGM approaches, we perform training of a DQC-based model, where data is encoded in a latent space with the proposed phase feature map of exponential capacity. This is followed by a trainable quantum circuit, forming the model. We then map the trained model to the bit basis using a fixed unitary transformation, in this case corresponding to a quantum Fourier transform circuit. It allows fast sampling from parametrized distributions using a single-shot readout. Importantly, latent space training provides models that are automatically differentiable, and we show how samples from solutions of stochastic differential equations (SDEs) can be accessed by solving stationary and time-dependent Fokker-Planck equations with a quantum protocol. Our approach opens a route to multidimensional generative modeling with qubit registers explicitly correlated via a (fixed) entangling layer. In this case quantum computers can offer advantage as efficient samplers, which perform complex inverse transform sampling enabled by the fundamental laws of quantum mechanics. On a technical side the advances are multiple, as we introduce the phase feature map, analyze its properties, and develop frequency-taming techniques that include qubitwise training and feature map sparsification.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可训练和可微分量子生成建模协议
我们提出了一种将概率分布作为可微分量子电路(DQC)来学习的方法,从而实现高效的量子生成模型(QGM)和合成数据生成。与现有的 QGM 方法不同,我们对基于 DQC 的模型进行了训练,在训练过程中,数据被编码到具有指数容量的相位特征图的潜在空间中。随后,可训练量子电路形成模型。然后,我们使用固定的单元变换将训练好的模型映射到比特基础上,在这种情况下,单元变换与量子傅里叶变换电路相对应。它允许使用单次读出从参数化分布中快速采样。重要的是,潜空间训练提供了可自动微分的模型,我们展示了如何通过量子协议求解静态和时变福克-普朗克方程,从随机微分方程(SDE)的解中获取样本。我们的方法为多维生成建模开辟了一条途径,其量子位寄存器通过(固定的)纠缠层明确相关。在这种情况下,量子计算机可以提供高效采样器的优势,在量子力学基本定律的支持下执行复杂的反变换采样。技术方面的进步是多方面的,我们引入了相位特征图,分析了它的特性,并开发了包括量子比特训练和特征图稀疏化在内的频率驯服技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
期刊最新文献
Explosive percolation in finite dimensions Iterative site percolation on triangular lattice Hydrodynamic hovering of swimming bacteria above surfaces Comparison of estimation limits for quantum two-parameter estimation Measurements of extended magnetic fields in laser-solid interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1