{"title":"Thermal hysteresis in wettability and the Leidenfrost phenomenon","authors":"Yutaku Kita, Kensuke Kida, Takaaki Ariyoshi, Sumitomo Hidaka, Masamichi Kohno, Yasuyuki Takata","doi":"10.1103/physrevresearch.6.033287","DOIUrl":null,"url":null,"abstract":"The Leidenfrost temperature (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>L</mi></msub></math>), at which the liquid drop lifetime peaks on a superheated surface, is believed to be wettability dependent. Here, we show that the wettability effect on <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>L</mi></msub></math> is subject to the history of the surface temperature. Observing a water drop evaporating on a polished stainless-steel surface heated from 100 to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>400</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi></mrow></math> in argon gas, we find <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>T</mi><mi>L</mi></msub><mo>≈</mo><mn>265</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi></mrow></math>. We then repeat the experiment along decreasing temperature and find a <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>L</mi></msub></math> increase by 10 K, i.e., <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>T</mi><mi>L</mi></msub><mo>≈</mo><mn>275</mn><msup><mspace width=\"0.16em\"></mspace><mo>∘</mo></msup><mi mathvariant=\"normal\">C</mi></mrow></math>. This thermal hysteresis is due to a reduced contact angle during heating. Once hydrophilized, the hysteresis disappears until the contact angle recovers. Similar observations are made in the air where oxidation is possible.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Leidenfrost temperature (), at which the liquid drop lifetime peaks on a superheated surface, is believed to be wettability dependent. Here, we show that the wettability effect on is subject to the history of the surface temperature. Observing a water drop evaporating on a polished stainless-steel surface heated from 100 to in argon gas, we find . We then repeat the experiment along decreasing temperature and find a increase by 10 K, i.e., . This thermal hysteresis is due to a reduced contact angle during heating. Once hydrophilized, the hysteresis disappears until the contact angle recovers. Similar observations are made in the air where oxidation is possible.