GreenWhisk: Emission-Aware Computing for Serverless Platform

Jayden Serenari, Sreekanth Sreekumar, Kaiwen Zhao, Saurabh Sarkar, Stephen Lee
{"title":"GreenWhisk: Emission-Aware Computing for Serverless Platform","authors":"Jayden Serenari, Sreekanth Sreekumar, Kaiwen Zhao, Saurabh Sarkar, Stephen Lee","doi":"arxiv-2409.03029","DOIUrl":null,"url":null,"abstract":"Serverless computing is an emerging cloud computing abstraction wherein the\ncloud platform transparently manages all resources, including explicitly\nprovisioning resources and geographical load balancing when the demand for\nservice spikes. Users provide code as functions, and the cloud platform runs\nthese functions handling all aspects of function execution. While prior work\nhas primarily focused on optimizing performance, this paper focuses on reducing\nthe carbon footprint of these systems making variations in grid carbon\nintensity and intermittency from renewables transparent to the user. We\nintroduce GreenWhisk, a carbon-aware serverless computing platform built upon\nApache OpenWhisk, operating in two modes - grid-connected and grid-isolated -\naddressing intermittency challenges arising from renewables and the grid's\ncarbon footprint. Moreover, we develop carbon-aware load balancing algorithms\nthat leverage energy and carbon information to reduce the carbon footprint. Our\nevaluation results show that GreenWhisk can easily incorporate carbon-aware\nalgorithms, thereby reducing the carbon footprint of functions without\nsignificantly impacting the performance of function execution. In doing so, our\nsystem design enables the integration of new carbon-aware strategies into a\nserverless computing platform.","PeriodicalId":501422,"journal":{"name":"arXiv - CS - Distributed, Parallel, and Cluster Computing","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Distributed, Parallel, and Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Serverless computing is an emerging cloud computing abstraction wherein the cloud platform transparently manages all resources, including explicitly provisioning resources and geographical load balancing when the demand for service spikes. Users provide code as functions, and the cloud platform runs these functions handling all aspects of function execution. While prior work has primarily focused on optimizing performance, this paper focuses on reducing the carbon footprint of these systems making variations in grid carbon intensity and intermittency from renewables transparent to the user. We introduce GreenWhisk, a carbon-aware serverless computing platform built upon Apache OpenWhisk, operating in two modes - grid-connected and grid-isolated - addressing intermittency challenges arising from renewables and the grid's carbon footprint. Moreover, we develop carbon-aware load balancing algorithms that leverage energy and carbon information to reduce the carbon footprint. Our evaluation results show that GreenWhisk can easily incorporate carbon-aware algorithms, thereby reducing the carbon footprint of functions without significantly impacting the performance of function execution. In doing so, our system design enables the integration of new carbon-aware strategies into a serverless computing platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GreenWhisk:无服务器平台的排放感知计算
无服务器计算是一种新兴的云计算抽象概念,云平台可以透明地管理所有资源,包括在服务需求激增时明确配置资源和地理负载平衡。用户将代码作为函数提供,云平台运行这些函数,处理函数执行的所有方面。以前的工作主要集中在优化性能上,而本文则侧重于减少这些系统的碳足迹,使电网碳强度和可再生能源间歇性的变化对用户透明。我们介绍了基于Apache OpenWhisk的无碳感知服务器计算平台GreenWhisk,该平台以两种模式运行--并网和隔离--解决了可再生能源和电网碳足迹带来的间歇性挑战。此外,我们还开发了碳感知负载平衡算法,利用能源和碳信息来减少碳足迹。评估结果表明,GreenWhisk 可以轻松集成碳感知算法,从而减少函数的碳足迹,而不会对函数的执行性能产生显著影响。这样,我们的系统设计就能将新的碳感知策略集成到无服务器计算平台中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively parallel CMA-ES with increasing population Communication Lower Bounds and Optimal Algorithms for Symmetric Matrix Computations Energy Efficiency Support for Software Defined Networks: a Serverless Computing Approach CountChain: A Decentralized Oracle Network for Counting Systems Delay Analysis of EIP-4844
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1