Ground state magnetic structure and magnetic field effects in the layered honeycomb antiferromagnet YbOCl

Zheng Zhang, Yanzhen Cai, Jinlong Jiao, Jing Kang, Dehong Yu, Bertrand Roessli, Anmin Zhang, Jianting Ji, Feng Jin, Jie Ma, Qingming Zhang
{"title":"Ground state magnetic structure and magnetic field effects in the layered honeycomb antiferromagnet YbOCl","authors":"Zheng Zhang, Yanzhen Cai, Jinlong Jiao, Jing Kang, Dehong Yu, Bertrand Roessli, Anmin Zhang, Jianting Ji, Feng Jin, Jie Ma, Qingming Zhang","doi":"10.1103/physrevresearch.6.033274","DOIUrl":null,"url":null,"abstract":"YbOCl is a representative member of the van der Waals layered honeycomb rare-earth chalcohalide <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi><mtext>Ch</mtext><mi>X</mi></math> (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>R</mi></math> = rare earth; Ch = O, S, Se, and Te; and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>X</mi></math> = F, Cl, Br, and I) family reported recently. Its spin ground state remains to be explored experimentally. We grew high-quality single crystals of YbOCl and conducted comprehensive thermodynamic, elastic, and inelastic neutron scattering experiments down to 50 mK. The experiments reveal an antiferromagnetic phase below 1.3 K which is identified as a spin ground state with an intralayer ferromagnetic and interlayer antiferromagnetic ordering. By applying sophisticated numerical techniques to a honeycomb (nearest-neighbor)–triangle (next-nearest-neighbor) model Hamiltonian which accurately describes the highly anisotropic spin system, we are able to simulate the experiments well and determine the diagonal and off-diagonal spin-exchange interactions. The simulations give an antiferromagnetic Kitaev term comparable to the Heisenberg one. The experiments under magnetic fields allow us to establish a magnetic field–temperature phase diagram around the spin ground state. Most interestingly, a relatively small magnetic field (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>∼</mo><mn>0.3</mn></math> to 3 T) can significantly suppress the antiferromagnetic order, suggesting an intriguing interplay of the Kitaev interaction and magnetic fields in the spin system. The present study provides fundamental insights into the highly anisotropic spin systems and opens a window to look into Kitaev spin physics in a rare-earth-based system.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

YbOCl is a representative member of the van der Waals layered honeycomb rare-earth chalcohalide RChX (R = rare earth; Ch = O, S, Se, and Te; and X = F, Cl, Br, and I) family reported recently. Its spin ground state remains to be explored experimentally. We grew high-quality single crystals of YbOCl and conducted comprehensive thermodynamic, elastic, and inelastic neutron scattering experiments down to 50 mK. The experiments reveal an antiferromagnetic phase below 1.3 K which is identified as a spin ground state with an intralayer ferromagnetic and interlayer antiferromagnetic ordering. By applying sophisticated numerical techniques to a honeycomb (nearest-neighbor)–triangle (next-nearest-neighbor) model Hamiltonian which accurately describes the highly anisotropic spin system, we are able to simulate the experiments well and determine the diagonal and off-diagonal spin-exchange interactions. The simulations give an antiferromagnetic Kitaev term comparable to the Heisenberg one. The experiments under magnetic fields allow us to establish a magnetic field–temperature phase diagram around the spin ground state. Most interestingly, a relatively small magnetic field (0.3 to 3 T) can significantly suppress the antiferromagnetic order, suggesting an intriguing interplay of the Kitaev interaction and magnetic fields in the spin system. The present study provides fundamental insights into the highly anisotropic spin systems and opens a window to look into Kitaev spin physics in a rare-earth-based system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
层状蜂巢反铁磁体 YbOCl 的基态磁结构和磁场效应
YbOCl 是最近报道的范德华层蜂窝状稀土氯化石 RChX(R = 稀土;Ch = O、S、Se 和 Te;X = F、Cl、Br 和 I)家族的代表成员。其自旋基态仍有待实验探索。我们生长了高质量的 YbOCl 单晶体,并进行了低至 50 mK 的全面热力学、弹性和非弹性中子散射实验。实验揭示了 1.3 K 以下的反铁磁相,并将其确定为具有层内铁磁和层间反铁磁有序的自旋基态。通过对精确描述高度各向异性自旋系统的蜂巢(最近邻)-三角(次最近邻)模型哈密顿应用复杂的数值技术,我们能够很好地模拟实验,并确定对角线和非对角线自旋交换相互作用。模拟得出的反铁磁基塔耶夫项与海森堡项相当。在磁场下进行的实验使我们能够围绕自旋基态建立磁场-温度相图。最有趣的是,相对较小的磁场(0.3 至 3 T)就能显著抑制反铁磁秩序,这表明自旋系统中基塔埃夫相互作用和磁场之间存在着有趣的相互作用。本研究提供了对高度各向异性自旋系统的基本见解,并为研究稀土基系统中的基塔耶夫自旋物理学打开了一扇窗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
期刊最新文献
Explosive percolation in finite dimensions Iterative site percolation on triangular lattice Hydrodynamic hovering of swimming bacteria above surfaces Comparison of estimation limits for quantum two-parameter estimation Measurements of extended magnetic fields in laser-solid interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1