{"title":"The Norming Sets of $$\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)$$","authors":"Sung Guen Kim","doi":"10.1007/s11253-024-02329-4","DOIUrl":null,"url":null,"abstract":"<p>Let <i>n</i> ∈ ℕ, <i>n</i> ≥ 2<i>.</i> An element (<i>x</i><sub>1</sub>,…,<i>x</i><sub><i>n</i></sub>) ∈ <i>E</i><sub><i>n</i></sub> is called a <i>norming point</i> of <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{n}E\\right)\\)</span> if ||<i>x</i><sub>1</sub>|| = <i>…</i> = ||<i>x</i><sub><i>n</i></sub>|| = 1 and <i>|T</i>(<i>x</i><sub>1</sub>,<i>…</i>,<i>x</i><sub><i>n</i></sub>)<i>|</i> = ||<i>T</i>||, where ℒ(<sup><i>n</i></sup><i>E</i>) denotes the space of all continuous <i>n</i>-linear forms on <i>E.</i> For <i>T</i> ∈ ℒ (<sup><i>n</i></sup><i>E</i>), we define\n</p><span>$$\\text{Norm}\\left(T\\right)=\\left\\{\\left({x}_{1},\\dots ,{x}_{n}\\right)\\in {E}^{n}:\\left({x}_{1},\\dots ,{x}_{n}\\right)\\text{ is a norming point of }T\\right\\}.$$</span><p>The set Norm(<i>T</i>) is called the <i>norming set</i> of <i>T.</i> For <i>m</i> ∈ ℕ<i>, m</i> ≥ 2, we characterize Norm(<i>T</i>) for any <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)\\)</span>, where <span>\\({l}_{1}^{n}={\\mathbb{R}}^{n}\\)</span> with the <i>l</i><sub>1</sub>-norm. As applications, we classify Norm(<i>T</i>) for every <i>T</i> ∈ <span>\\(\\mathcal{L}\\left({}^{m}{l}_{1}^{n}\\right)\\)</span> with <i>n</i> = 2, 3 and <i>m</i> = 2<i>.</i></p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02329-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let n ∈ ℕ, n ≥ 2. An element (x1,…,xn) ∈ En is called a norming point of T ∈ \(\mathcal{L}\left({}^{n}E\right)\) if ||x1|| = … = ||xn|| = 1 and |T(x1,…,xn)| = ||T||, where ℒ(nE) denotes the space of all continuous n-linear forms on E. For T ∈ ℒ (nE), we define
$$\text{Norm}\left(T\right)=\left\{\left({x}_{1},\dots ,{x}_{n}\right)\in {E}^{n}:\left({x}_{1},\dots ,{x}_{n}\right)\text{ is a norming point of }T\right\}.$$
The set Norm(T) is called the norming set of T. For m ∈ ℕ, m ≥ 2, we characterize Norm(T) for any T ∈ \(\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)\), where \({l}_{1}^{n}={\mathbb{R}}^{n}\) with the l1-norm. As applications, we classify Norm(T) for every T ∈ \(\mathcal{L}\left({}^{m}{l}_{1}^{n}\right)\) with n = 2, 3 and m = 2.