Exploring Sentiment Dynamics and Predictive Behaviors in Cryptocurrency Discussions by Few-Shot Learning with Large Language Models

Moein Shahiki Tash, Zahra Ahani, Mohim Tash, Olga Kolesnikova, Grigori Sidorov
{"title":"Exploring Sentiment Dynamics and Predictive Behaviors in Cryptocurrency Discussions by Few-Shot Learning with Large Language Models","authors":"Moein Shahiki Tash, Zahra Ahani, Mohim Tash, Olga Kolesnikova, Grigori Sidorov","doi":"arxiv-2409.02836","DOIUrl":null,"url":null,"abstract":"This study performs analysis of Predictive statements, Hope speech, and\nRegret Detection behaviors within cryptocurrency-related discussions,\nleveraging advanced natural language processing techniques. We introduce a\nnovel classification scheme named \"Prediction statements,\" categorizing\ncomments into Predictive Incremental, Predictive Decremental, Predictive\nNeutral, or Non-Predictive categories. Employing GPT-4o, a cutting-edge large\nlanguage model, we explore sentiment dynamics across five prominent\ncryptocurrencies: Cardano, Binance, Matic, Fantom, and Ripple. Our analysis\nreveals distinct patterns in predictive sentiments, with Matic demonstrating a\nnotably higher propensity for optimistic predictions. Additionally, we\ninvestigate hope and regret sentiments, uncovering nuanced interplay between\nthese emotions and predictive behaviors. Despite encountering limitations\nrelated to data volume and resource availability, our study reports valuable\ndiscoveries concerning investor behavior and sentiment trends within the\ncryptocurrency market, informing strategic decision-making and future research\nendeavors.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study performs analysis of Predictive statements, Hope speech, and Regret Detection behaviors within cryptocurrency-related discussions, leveraging advanced natural language processing techniques. We introduce a novel classification scheme named "Prediction statements," categorizing comments into Predictive Incremental, Predictive Decremental, Predictive Neutral, or Non-Predictive categories. Employing GPT-4o, a cutting-edge large language model, we explore sentiment dynamics across five prominent cryptocurrencies: Cardano, Binance, Matic, Fantom, and Ripple. Our analysis reveals distinct patterns in predictive sentiments, with Matic demonstrating a notably higher propensity for optimistic predictions. Additionally, we investigate hope and regret sentiments, uncovering nuanced interplay between these emotions and predictive behaviors. Despite encountering limitations related to data volume and resource availability, our study reports valuable discoveries concerning investor behavior and sentiment trends within the cryptocurrency market, informing strategic decision-making and future research endeavors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过大语言模型的少量学习探索加密货币讨论中的情感动态和预测行为
本研究利用先进的自然语言处理技术,对加密货币相关讨论中的预测性发言、希望发言和遗憾检测行为进行了分析。我们引入了一种名为 "预测语句 "的高级分类方案,将评论分为 "预测性递增"、"预测性递减"、"预测性中性 "和 "非预测性 "四类。我们采用 GPT-4o 这一尖端的大型语言模型,探索了五种著名加密货币的情感动态:Cardano、Binance、Matic、Fantom 和 Ripple。我们的分析揭示了预测情绪的独特模式,其中 Matic 的乐观预测倾向明显更高。此外,我们还研究了希望和遗憾情绪,发现了这些情绪与预测行为之间微妙的相互作用。尽管遇到了数据量和资源可用性方面的限制,我们的研究还是报告了有关加密货币市场中投资者行为和情绪趋势的有价值的发现,为战略决策和未来的研究工作提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1