STAResNet: a Network in Spacetime Algebra to solve Maxwell's PDEs

Alberto Pepe, Sven Buchholz, Joan Lasenby
{"title":"STAResNet: a Network in Spacetime Algebra to solve Maxwell's PDEs","authors":"Alberto Pepe, Sven Buchholz, Joan Lasenby","doi":"arxiv-2408.13619","DOIUrl":null,"url":null,"abstract":"We introduce STAResNet, a ResNet architecture in Spacetime Algebra (STA) to\nsolve Maxwell's partial differential equations (PDEs). Recently, networks in\nGeometric Algebra (GA) have been demonstrated to be an asset for truly\ngeometric machine learning. In \\cite{brandstetter2022clifford}, GA networks\nhave been employed for the first time to solve partial differential equations\n(PDEs), demonstrating an increased accuracy over real-valued networks. In this\nwork we solve Maxwell's PDEs both in GA and STA employing the same ResNet\narchitecture and dataset, to discuss the impact that the choice of the right\nalgebra has on the accuracy of GA networks. Our study on STAResNet shows how\nthe correct geometric embedding in Clifford Networks gives a mean square error\n(MSE), between ground truth and estimated fields, up to 2.6 times lower than\nthan obtained with a standard Clifford ResNet with 6 times fewer trainable\nparameters. STAREsNet demonstrates consistently lower MSE and higher\ncorrelation regardless of scenario. The scenarios tested are: sampling period\nof the dataset; presence of obstacles with either seen or unseen\nconfigurations; the number of channels in the ResNet architecture; the number\nof rollout steps; whether the field is in 2D or 3D space. This demonstrates how\nchoosing the right algebra in Clifford networks is a crucial factor for more\ncompact, accurate, descriptive and better generalising pipelines.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce STAResNet, a ResNet architecture in Spacetime Algebra (STA) to solve Maxwell's partial differential equations (PDEs). Recently, networks in Geometric Algebra (GA) have been demonstrated to be an asset for truly geometric machine learning. In \cite{brandstetter2022clifford}, GA networks have been employed for the first time to solve partial differential equations (PDEs), demonstrating an increased accuracy over real-valued networks. In this work we solve Maxwell's PDEs both in GA and STA employing the same ResNet architecture and dataset, to discuss the impact that the choice of the right algebra has on the accuracy of GA networks. Our study on STAResNet shows how the correct geometric embedding in Clifford Networks gives a mean square error (MSE), between ground truth and estimated fields, up to 2.6 times lower than than obtained with a standard Clifford ResNet with 6 times fewer trainable parameters. STAREsNet demonstrates consistently lower MSE and higher correlation regardless of scenario. The scenarios tested are: sampling period of the dataset; presence of obstacles with either seen or unseen configurations; the number of channels in the ResNet architecture; the number of rollout steps; whether the field is in 2D or 3D space. This demonstrates how choosing the right algebra in Clifford networks is a crucial factor for more compact, accurate, descriptive and better generalising pipelines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STAResNet:用于求解麦克斯韦 PDE 的时空代数网络
我们介绍了 STAResNet,这是时空代数(STA)中的一种 ResNet 架构,用于求解麦克斯韦偏微分方程(PDE)。最近,几何代数(GA)中的网络已被证明是真正几何机器学习的资产。在《cite{brandstetter2022clifford}》一书中,GA网络首次被用于求解偏微分方程(PDEs),与实值网络相比,其准确性得到了提高。在这项研究中,我们采用相同的 ResNet 架构和数据集,在 GA 和 STA 中求解了麦克斯韦 PDE,并讨论了右代数的选择对 GA 网络准确性的影响。我们对 STAResNet 的研究表明,在克利福德网络中进行正确的几何嵌入后,地面实况与估计场之间的均方误差(MSE)比可训练参数少 6 倍的标准克利福德 ResNet 低 2.6 倍。STAREsNet 在任何情况下都表现出较低的 MSE 和较高的相关性。测试的场景包括:数据集的采样周期;存在可见或不可见配置的障碍物;ResNet 架构中的通道数量;滚动步骤的数量;场地是在二维空间还是三维空间。这说明了在克利福德网络中选择正确的代数是如何成为更紧凑、更准确、更有描述性和更有概括性的管道的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1