Efficient FGM optimization with a novel design space and DeepONet

Piyush Agrawal, Ihina Mahajan, Shivam Choubey, Manish Agrawal
{"title":"Efficient FGM optimization with a novel design space and DeepONet","authors":"Piyush Agrawal, Ihina Mahajan, Shivam Choubey, Manish Agrawal","doi":"arxiv-2408.14203","DOIUrl":null,"url":null,"abstract":"This manuscript proposes an optimization framework to find the tailor-made\nfunctionally graded material (FGM) profiles for thermoelastic applications.\nThis optimization framework consists of (1) a random profile generation scheme,\n(2) deep learning (DL) based surrogate models for the prediction of thermal and\nstructural quantities, and (3) a genetic algorithm (GA). From the proposed\nrandom profile generation scheme, we strive for a generic design space that\ndoes not contain impractical designs, i.e., profiles with sharp gradations. We\nalso show that the power law is a strict subset of the proposed design space.\nWe use a dense neural network-based surrogate model for the prediction of\nmaximum stress, while the deep neural operator DeepONet is used for the\nprediction of the thermal field. The point-wise effective prediction of the\nthermal field enables us to implement the constraint that the metallic content\nof the FGM remains within a specified limit. The integration of the profile\ngeneration scheme and DL-based surrogate models with GA provides us with an\nefficient optimization scheme. The efficacy of the proposed framework is\ndemonstrated through various numerical examples.","PeriodicalId":501309,"journal":{"name":"arXiv - CS - Computational Engineering, Finance, and Science","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Engineering, Finance, and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript proposes an optimization framework to find the tailor-made functionally graded material (FGM) profiles for thermoelastic applications. This optimization framework consists of (1) a random profile generation scheme, (2) deep learning (DL) based surrogate models for the prediction of thermal and structural quantities, and (3) a genetic algorithm (GA). From the proposed random profile generation scheme, we strive for a generic design space that does not contain impractical designs, i.e., profiles with sharp gradations. We also show that the power law is a strict subset of the proposed design space. We use a dense neural network-based surrogate model for the prediction of maximum stress, while the deep neural operator DeepONet is used for the prediction of the thermal field. The point-wise effective prediction of the thermal field enables us to implement the constraint that the metallic content of the FGM remains within a specified limit. The integration of the profile generation scheme and DL-based surrogate models with GA provides us with an efficient optimization scheme. The efficacy of the proposed framework is demonstrated through various numerical examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用新型设计空间和 DeepONet 高效优化烟气脱硫装置
该优化框架包括:(1)随机剖面生成方案;(2)基于深度学习(DL)的代用模型,用于预测热量和结构量;(3)遗传算法(GA)。根据所提出的随机轮廓生成方案,我们努力寻求一个通用的设计空间,该空间不包含不切实际的设计,即具有尖锐梯度的轮廓。我们使用基于密集神经网络的代用模型预测最大应力,同时使用深度神经算子 DeepONet 预测热场。通过对热场进行有效的点预测,我们可以实现 FGM 金属含量保持在指定范围内的约束。轮廓生成方案和基于 DL 的代用模型与 GA 的集成为我们提供了一个高效的优化方案。我们通过各种数值示例证明了所提出框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A generalized non-hourglass updated Lagrangian formulation for SPH solid dynamics A Knowledge-Inspired Hierarchical Physics-Informed Neural Network for Pipeline Hydraulic Transient Simulation Uncertainty Analysis of Limit Cycle Oscillations in Nonlinear Dynamical Systems with the Fourier Generalized Polynomial Chaos Expansion Micropolar elastoplasticity using a fast Fourier transform-based solver A differentiable structural analysis framework for high-performance design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1