Dong-Ni Liu, Wen-Fang Zhang, Wan-Di Feng, Shuang Xu, Dan-Hong Feng, Fu-Hang Song, Hua-Wei Zhang, Lian-Hua Fang, Guan-Hua Du, Yue-Hua Wang
{"title":"Chrysomycin A Reshapes Metabolism and Increases Oxidative Stress to Hinder Glioblastoma Progression","authors":"Dong-Ni Liu, Wen-Fang Zhang, Wan-Di Feng, Shuang Xu, Dan-Hong Feng, Fu-Hang Song, Hua-Wei Zhang, Lian-Hua Fang, Guan-Hua Du, Yue-Hua Wang","doi":"10.3390/md22090391","DOIUrl":null,"url":null,"abstract":"Glioblastoma represents the predominant and a highly aggressive primary neoplasm of the central nervous system that has an abnormal metabolism. Our previous study showed that chrysomycin A (Chr-A) curbed glioblastoma progression in vitro and in vivo. However, whether Chr-A could inhibit orthotopic glioblastoma and how it reshapes metabolism are still unclear. In this study, Chr-A markedly suppressed the development of intracranial U87 gliomas. The results from airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) indicated that Chr-A improved the abnormal metabolism of mice with glioblastoma. Key enzymes including glutaminase (GLS), glutamate dehydrogenases 1 (GDH1), hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD) were regulated by Chr-A. Chr-A further altered the level of nicotinamide adenine dinucleotide phosphate (NADPH), thus causing oxidative stress with the downregulation of Nrf-2 to inhibit glioblastoma. Our study offers a novel perspective for comprehending the anti-glioma mechanism of Chr-A, highlighting its potential as a promising chemotherapeutic agent for glioblastoma.","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"6 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22090391","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma represents the predominant and a highly aggressive primary neoplasm of the central nervous system that has an abnormal metabolism. Our previous study showed that chrysomycin A (Chr-A) curbed glioblastoma progression in vitro and in vivo. However, whether Chr-A could inhibit orthotopic glioblastoma and how it reshapes metabolism are still unclear. In this study, Chr-A markedly suppressed the development of intracranial U87 gliomas. The results from airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) indicated that Chr-A improved the abnormal metabolism of mice with glioblastoma. Key enzymes including glutaminase (GLS), glutamate dehydrogenases 1 (GDH1), hexokinase 2 (HK2) and glucose-6-phosphate dehydrogenase (G6PD) were regulated by Chr-A. Chr-A further altered the level of nicotinamide adenine dinucleotide phosphate (NADPH), thus causing oxidative stress with the downregulation of Nrf-2 to inhibit glioblastoma. Our study offers a novel perspective for comprehending the anti-glioma mechanism of Chr-A, highlighting its potential as a promising chemotherapeutic agent for glioblastoma.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.