{"title":"Exact ground states for pentagon chains with spin–orbit interaction","authors":"Zsolt Gulacsi","doi":"10.1140/epjb/s10051-024-00757-6","DOIUrl":null,"url":null,"abstract":"<p>Exact ground states (GS) are deduced for conducting polymers possessing pentagon type of unit cell. The study is done in the presence of many-body spin–orbit interaction (SOI), local and nearest-neighbor Coulomb repulsion (CR), and presence of external <i>E</i> electric and <i>B</i> magnetic fields (EF). The simultaneous presence of SOI, CR, and EF in the exact conducting polymer GS is a novelty, so the development of the technique for the treatment possibility of such strongly correlated cases is presented in detail. The deduced GS show a broad spectrum of physical characteristics ranging from charge density waves doubling the system periodicity, metal–insulator transitions, to interesting external field-driven effects as, e.g., modification possibility of a static charge distribution by a static EF.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 8","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjb/s10051-024-00757-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00757-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Exact ground states (GS) are deduced for conducting polymers possessing pentagon type of unit cell. The study is done in the presence of many-body spin–orbit interaction (SOI), local and nearest-neighbor Coulomb repulsion (CR), and presence of external E electric and B magnetic fields (EF). The simultaneous presence of SOI, CR, and EF in the exact conducting polymer GS is a novelty, so the development of the technique for the treatment possibility of such strongly correlated cases is presented in detail. The deduced GS show a broad spectrum of physical characteristics ranging from charge density waves doubling the system periodicity, metal–insulator transitions, to interesting external field-driven effects as, e.g., modification possibility of a static charge distribution by a static EF.