LLM-AIx: An open source pipeline for Information Extraction from unstructured medical text based on privacy preserving Large Language Models

Isabella Catharina Wiest, Fabian Wolf, Marie-Elisabeth Leßmann, Marko van Treeck, Dyke Ferber, Jiefu Zhu, Heiko Boehme, Keno K. Bressem, Hannes Ulrich, Matthias P. Ebert, Jakob Nikolas Kather
{"title":"LLM-AIx: An open source pipeline for Information Extraction from unstructured medical text based on privacy preserving Large Language Models","authors":"Isabella Catharina Wiest, Fabian Wolf, Marie-Elisabeth Leßmann, Marko van Treeck, Dyke Ferber, Jiefu Zhu, Heiko Boehme, Keno K. Bressem, Hannes Ulrich, Matthias P. Ebert, Jakob Nikolas Kather","doi":"10.1101/2024.09.02.24312917","DOIUrl":null,"url":null,"abstract":"In clinical science and practice, text data, such as clinical letters or procedure reports, is stored in an unstructured way. This type of data is not a quantifiable resource for any kind of quantitative investigations and any manual review or structured information retrieval is time-consuming and costly. The capabilities of Large Language Models (LLMs) mark a paradigm shift in natural language processing and offer new possibilities for structured Information Extraction (IE) from medical free text. This protocol describes a workflow for LLM based information extraction (LLM-AIx), enabling extraction of predefined entities from unstructured text using privacy preserving LLMs. By converting unstructured clinical text into structured data, LLM-AIx addresses a critical barrier in clinical research and practice, where the efficient extraction of information is essential for improving clinical decision-making, enhancing patient outcomes, and facilitating large-scale data analysis.","PeriodicalId":501454,"journal":{"name":"medRxiv - Health Informatics","volume":"256 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.02.24312917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical science and practice, text data, such as clinical letters or procedure reports, is stored in an unstructured way. This type of data is not a quantifiable resource for any kind of quantitative investigations and any manual review or structured information retrieval is time-consuming and costly. The capabilities of Large Language Models (LLMs) mark a paradigm shift in natural language processing and offer new possibilities for structured Information Extraction (IE) from medical free text. This protocol describes a workflow for LLM based information extraction (LLM-AIx), enabling extraction of predefined entities from unstructured text using privacy preserving LLMs. By converting unstructured clinical text into structured data, LLM-AIx addresses a critical barrier in clinical research and practice, where the efficient extraction of information is essential for improving clinical decision-making, enhancing patient outcomes, and facilitating large-scale data analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LLM-AIx:基于隐私保护大语言模型的非结构化医学文本信息提取开源管道
在临床科学和实践中,临床信件或手术报告等文本数据是以非结构化方式存储的。这类数据对于任何类型的定量研究来说都不是可量化的资源,而且任何人工审核或结构化信息检索都非常耗时和昂贵。大语言模型(LLM)的功能标志着自然语言处理的范式转变,为从医学自由文本中进行结构化信息提取(IE)提供了新的可能性。本协议描述了基于 LLM 的信息提取(LLM-AIx)工作流程,利用保护隐私的 LLM 从非结构化文本中提取预定义实体。通过将非结构化临床文本转换为结构化数据,LLM-AIx 解决了临床研究和实践中的一个关键障碍,即有效提取信息对于改善临床决策、提高患者疗效和促进大规模数据分析至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A case is not a case is not a case - challenges and solutions in determining urolithiasis caseloads using the digital infrastructure of a clinical data warehouse Reliable Online Auditory Cognitive Testing: An observational study Federated Multiple Imputation for Variables that Are Missing Not At Random in Distributed Electronic Health Records Characterizing the connection between Parkinson's disease progression and healthcare utilization Generative AI and Large Language Models in Reducing Medication Related Harm and Adverse Drug Events - A Scoping Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1