Taming the Production of Bioluminescent Wood Using the White Rot Fungus Desarmillaria Tabescens

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-09-12 DOI:10.1002/advs.202403215
Francis W. M. R. Schwarze, Tiago Carvalho, Giacomo Reina, Luiz Garcia Greca, Urs Buenter, Zennat Gholam, Leonard Krupnik, Antonia Neels, Luciano Boesel, Hugh Morris, Markus Heeb, Anja Huch, Gustav Nyström, Giorgia Giovannini
{"title":"Taming the Production of Bioluminescent Wood Using the White Rot Fungus Desarmillaria Tabescens","authors":"Francis W. M. R. Schwarze,&nbsp;Tiago Carvalho,&nbsp;Giacomo Reina,&nbsp;Luiz Garcia Greca,&nbsp;Urs Buenter,&nbsp;Zennat Gholam,&nbsp;Leonard Krupnik,&nbsp;Antonia Neels,&nbsp;Luciano Boesel,&nbsp;Hugh Morris,&nbsp;Markus Heeb,&nbsp;Anja Huch,&nbsp;Gustav Nyström,&nbsp;Giorgia Giovannini","doi":"10.1002/advs.202403215","DOIUrl":null,"url":null,"abstract":"<p>Although bioluminescence is documented both anecdotally and experimentally, the parameters involved in the production of fungal bioluminescence during wood colonization have not been identified to date. Here, for the first time, this work develops a methodology to produce a hybrid living material by manipulating wood colonization through merging the living fungus Desarmillaria tabescens with nonliving balsa (Ochroma pyramidale) wood to achieve and control the autonomous emission of bioluminescence. The hybrid material with the highest bioluminescence is produced by soaking the wood blocks before co-cultivating them with the fungus for 3 months. Regardless of the incubation period, the strongest bioluminescence is evident from balsa wood blocks with a moisture content of 700–1200%, highlighting the fundamental role of moisture content for bioluminescence production. Further characterization reveals that D. tabescens preferentially degraded hemicelluloses and lignin in balsa wood. Fourier-transform infrared spectroscopy reveals a decrease in lignin, while X-ray diffraction analysis confirms that the cellulose crystalline structure is not altered during the colonization process. This information will enable the design of ad-hoc synthetic materials that use fungi as tools to maximize bioluminescence production, paving the way for an innovative hybrid material that could find application in the sustainable production of light.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 44","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202403215","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202403215","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Although bioluminescence is documented both anecdotally and experimentally, the parameters involved in the production of fungal bioluminescence during wood colonization have not been identified to date. Here, for the first time, this work develops a methodology to produce a hybrid living material by manipulating wood colonization through merging the living fungus Desarmillaria tabescens with nonliving balsa (Ochroma pyramidale) wood to achieve and control the autonomous emission of bioluminescence. The hybrid material with the highest bioluminescence is produced by soaking the wood blocks before co-cultivating them with the fungus for 3 months. Regardless of the incubation period, the strongest bioluminescence is evident from balsa wood blocks with a moisture content of 700–1200%, highlighting the fundamental role of moisture content for bioluminescence production. Further characterization reveals that D. tabescens preferentially degraded hemicelluloses and lignin in balsa wood. Fourier-transform infrared spectroscopy reveals a decrease in lignin, while X-ray diffraction analysis confirms that the cellulose crystalline structure is not altered during the colonization process. This information will enable the design of ad-hoc synthetic materials that use fungi as tools to maximize bioluminescence production, paving the way for an innovative hybrid material that could find application in the sustainable production of light.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用白腐真菌 Desarmillaria Tabescens 生产生物发光木材
虽然生物发光在轶事和实验中都有记载,但在木材定殖过程中产生真菌生物发光所涉及的参数迄今尚未确定。在此,这项研究首次开发出一种方法,通过将有生命的真菌 Desarmillaria tabescens 与无生命的巴沙木(Ochroma pyramidale)合并,操纵木材定殖,生产出一种杂交活体材料,从而实现并控制生物发光的自主发射。在将木块与真菌共同培养 3 个月之前,先将木块浸泡,就能生产出生物荧光最高的杂交材料。无论培养时间长短,含水量在 700-1200% 的轻木木块发出的生物荧光最强,这说明含水量对生物荧光的产生起着至关重要的作用。进一步的特性分析表明,D. tabescens 优先降解轻木中的半纤维素和木质素。傅立叶变换红外光谱显示木质素减少,而 X 射线衍射分析证实纤维素晶体结构在定殖过程中没有改变。这些信息将有助于设计以真菌为工具的临时合成材料,最大限度地提高生物发光的产量,为创新的混合材料铺平道路,这种材料可应用于可持续的光生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Delayed Administration of IGFBP7 Improved Bone Defect Healing via ZO-1 Dependent Vessel Stabilization. Triboelectric Mat Multimodal Sensing System (TMMSS) Enhanced by Infrared Image Perception for Sleep and Emotion-Relevant Activity Monitoring. Accurate Diagnosis of Lower Respiratory Infections Using Host Response and Respiratory Microbiome from a Single Metatranscriptome Test of Bronchoalveolar Lavage Fluid. Actuation-Mediated Compression of a Mechanoresponsive Hydrogel by Soft Robotics to Control Release of Therapeutic Proteins. All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1