ChatGPT as a bioinformatic partner.

Gianluca Mondillo, Alessandra Perrotta, Simone Colosimo, Vittoria Frattolillo
{"title":"ChatGPT as a bioinformatic partner.","authors":"Gianluca Mondillo, Alessandra Perrotta, Simone Colosimo, Vittoria Frattolillo","doi":"10.1101/2024.08.20.24312291","DOIUrl":null,"url":null,"abstract":"The advanced Large Language Model ChatGPT4o, developed by OpenAI, can be used in the field of bioinformatics to analyze and understand cross-reactive allergic reactions. This study explores the use of ChatGPT4o to support research on allergens, particularly in the cross-reactivity syndrome between cat and pork. Using a hypothetical clinical case of a child with a confirmed allergy to Fel d 2 (cat albumin) and Sus s 1 (pork albumin), the model guided data collection, protein sequence analysis, and three-dimensional structure visualization. Through the use of bioinformatics tools like SDAP 2.0 and BepiPRED, the epitope regions of the allergenic proteins were predicted, con-firming their accessibility to immunoglobulin E (IgE) and probability of cross-reactivity. The results show that regions with high epitope probability exhibit high surface accessibility and predominantly coil and helical structures. The construction of a phylogenetic tree further sup-ported the evolutionary relationships among the studied allergens. ChatGPT4o has demonstrated its usefulness in guiding non-specialist researchers through complex bioinformatics processes, making advanced science accessible and improving analytical and innovation capabilities.","PeriodicalId":501454,"journal":{"name":"medRxiv - Health Informatics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.20.24312291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advanced Large Language Model ChatGPT4o, developed by OpenAI, can be used in the field of bioinformatics to analyze and understand cross-reactive allergic reactions. This study explores the use of ChatGPT4o to support research on allergens, particularly in the cross-reactivity syndrome between cat and pork. Using a hypothetical clinical case of a child with a confirmed allergy to Fel d 2 (cat albumin) and Sus s 1 (pork albumin), the model guided data collection, protein sequence analysis, and three-dimensional structure visualization. Through the use of bioinformatics tools like SDAP 2.0 and BepiPRED, the epitope regions of the allergenic proteins were predicted, con-firming their accessibility to immunoglobulin E (IgE) and probability of cross-reactivity. The results show that regions with high epitope probability exhibit high surface accessibility and predominantly coil and helical structures. The construction of a phylogenetic tree further sup-ported the evolutionary relationships among the studied allergens. ChatGPT4o has demonstrated its usefulness in guiding non-specialist researchers through complex bioinformatics processes, making advanced science accessible and improving analytical and innovation capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ChatGPT 作为生物信息合作伙伴。
由 OpenAI 开发的高级大型语言模型 ChatGPT4o 可用于生物信息学领域,以分析和理解交叉反应性过敏反应。本研究探讨了如何利用 ChatGPT4o 支持过敏原研究,尤其是猫和猪肉之间的交叉反应综合征。该模型使用了一个假定的临床病例,即一个对 Fel d 2(猫白蛋白)和 Sus s 1(猪白蛋白)确诊过敏的儿童,该模型指导了数据收集、蛋白质序列分析和三维结构可视化。通过使用 SDAP 2.0 和 BepiPRED 等生物信息学工具,预测了过敏原蛋白的表位区,确认了它们与免疫球蛋白 E (IgE) 的可及性和交叉反应的可能性。结果表明,表位概率高的区域具有较高的表面可及性,且主要为螺旋结构。系统发生树的构建进一步证实了所研究过敏原之间的进化关系。ChatGPT4o 在指导非专业研究人员完成复杂的生物信息学过程、普及先进科学知识以及提高分析和创新能力方面证明了它的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A case is not a case is not a case - challenges and solutions in determining urolithiasis caseloads using the digital infrastructure of a clinical data warehouse Reliable Online Auditory Cognitive Testing: An observational study Federated Multiple Imputation for Variables that Are Missing Not At Random in Distributed Electronic Health Records Characterizing the connection between Parkinson's disease progression and healthcare utilization Generative AI and Large Language Models in Reducing Medication Related Harm and Adverse Drug Events - A Scoping Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1