A short introduction to Neural Networks and their application to Earth and Materials Science Science

Duccio Fanelli, Luca Bindi, Lorenzo Chicchi, Claudio Pereti, Roberta Sessoli, Simone Tommasini
{"title":"A short introduction to Neural Networks and their application to Earth and Materials Science Science","authors":"Duccio Fanelli, Luca Bindi, Lorenzo Chicchi, Claudio Pereti, Roberta Sessoli, Simone Tommasini","doi":"arxiv-2408.11395","DOIUrl":null,"url":null,"abstract":"Neural networks are gaining widespread relevance for their versatility,\nholding the promise to yield a significant methodological shift in different\ndomain of applied research. Here, we provide a simple pedagogical account of\nthe basic functioning of a feedforward neural network. Then we move forward to\nreviewing two recent applications of machine learning to Earth and Materials\nScience. We will in particular begin by discussing a neural network based\ngeothermobarometer, which returns reliable predictions of the\npressure/temperature conditions of magma storage. Further, we will turn to\nillustrate how machine learning tools, tested on the list of minerals from the\nInternational Mineralogical Association, can help in the search for novel\nsuperconducting materials.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural networks are gaining widespread relevance for their versatility, holding the promise to yield a significant methodological shift in different domain of applied research. Here, we provide a simple pedagogical account of the basic functioning of a feedforward neural network. Then we move forward to reviewing two recent applications of machine learning to Earth and Materials Science. We will in particular begin by discussing a neural network based geothermobarometer, which returns reliable predictions of the pressure/temperature conditions of magma storage. Further, we will turn to illustrate how machine learning tools, tested on the list of minerals from the International Mineralogical Association, can help in the search for novel superconducting materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络及其在地球和材料科学中的应用简介
神经网络因其多功能性而日益受到广泛关注,有望在应用研究的不同领域带来方法论上的重大转变。在此,我们将对前馈神经网络的基本功能进行简单的教学阐述。然后,我们将回顾机器学习在地球科学和材料科学领域的两个最新应用。首先,我们将特别讨论基于神经网络的温度计,它能可靠地预测岩浆储存的压力/温度条件。此外,我们还将展示机器学习工具如何通过对国际矿物学协会(International Mineralogical Association)的矿物清单进行测试,帮助寻找新型超导材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Groundwater dynamics beneath a marine ice sheet Generalized failure law for landslides, rockbursts, glacier breakoffs, and volcanic eruptions DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models with 3D Diffusion Models The Arpu Kuilpu Meteorite: In-depth characterization of an H5 chondrite delivered from a Jupiter Family Comet orbit The Sun's Birth Environment: Context for Meteoritics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1