Propagating the prior from shallow to deep with a pre-trained velocity-model Generative Transformer network

Randy Harsuko, Shijun Cheng, Tariq Alkhalifah
{"title":"Propagating the prior from shallow to deep with a pre-trained velocity-model Generative Transformer network","authors":"Randy Harsuko, Shijun Cheng, Tariq Alkhalifah","doi":"arxiv-2408.09767","DOIUrl":null,"url":null,"abstract":"Building subsurface velocity models is essential to our goals in utilizing\nseismic data for Earth discovery and exploration, as well as monitoring. With\nthe dawn of machine learning, these velocity models (or, more precisely, their\ndistribution) can be stored accurately and efficiently in a generative model.\nThese stored velocity model distributions can be utilized to regularize or\nquantify uncertainties in inverse problems, like full waveform inversion.\nHowever, most generators, like normalizing flows or diffusion models, treat the\nimage (velocity model) uniformly, disregarding spatial dependencies and\nresolution changes with respect to the observation locations. To address this\nweakness, we introduce VelocityGPT, a novel implementation that utilizes\nTransformer decoders trained autoregressively to generate a velocity model from\nshallow subsurface to deep. Owing to the fact that seismic data are often\nrecorded on the Earth's surface, a top-down generator can utilize the inverted\ninformation in the shallow as guidance (prior) to generating the deep. To\nfacilitate the implementation, we use an additional network to compress the\nvelocity model. We also inject prior information, like well or structure\n(represented by a migration image) to generate the velocity model. Using\nsynthetic data, we demonstrate the effectiveness of VelocityGPT as a promising\napproach in generative model applications for seismic velocity model building.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Building subsurface velocity models is essential to our goals in utilizing seismic data for Earth discovery and exploration, as well as monitoring. With the dawn of machine learning, these velocity models (or, more precisely, their distribution) can be stored accurately and efficiently in a generative model. These stored velocity model distributions can be utilized to regularize or quantify uncertainties in inverse problems, like full waveform inversion. However, most generators, like normalizing flows or diffusion models, treat the image (velocity model) uniformly, disregarding spatial dependencies and resolution changes with respect to the observation locations. To address this weakness, we introduce VelocityGPT, a novel implementation that utilizes Transformer decoders trained autoregressively to generate a velocity model from shallow subsurface to deep. Owing to the fact that seismic data are often recorded on the Earth's surface, a top-down generator can utilize the inverted information in the shallow as guidance (prior) to generating the deep. To facilitate the implementation, we use an additional network to compress the velocity model. We also inject prior information, like well or structure (represented by a migration image) to generate the velocity model. Using synthetic data, we demonstrate the effectiveness of VelocityGPT as a promising approach in generative model applications for seismic velocity model building.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用预先训练的速度模型生成变换器网络从浅层向深层传播先验信息
建立地下速度模型对于我们利用地震数据进行地球发现、勘探和监测的目标至关重要。随着机器学习技术的发展,这些速度模型(或者更准确地说,它们的分布)可以准确、高效地存储在生成模型中。这些存储的速度模型分布可以用来正则化或量化反演问题(如全波形反演)中的不确定性。然而,大多数生成器(如归一化流动或扩散模型)都是统一处理图像(速度模型)的,忽略了空间依赖性和相对于观测位置的分辨率变化。为了解决这一缺陷,我们引入了 VelocityGPT,这是一种利用经过自回归训练的变压器解码器生成从浅层地下到深层的速度模型的新型实现方法。由于地震数据通常记录在地球表面,自上而下的生成器可以利用浅层的反演信息作为生成深层数据的指导(先导)。为了便于实现,我们使用了一个额外的网络来压缩速度模型。我们还注入了先验信息,如井或结构(由迁移图像表示),以生成速度模型。利用合成数据,我们证明了 VelocityGPT 在地震速度模型生成应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Groundwater dynamics beneath a marine ice sheet Generalized failure law for landslides, rockbursts, glacier breakoffs, and volcanic eruptions DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models with 3D Diffusion Models The Arpu Kuilpu Meteorite: In-depth characterization of an H5 chondrite delivered from a Jupiter Family Comet orbit The Sun's Birth Environment: Context for Meteoritics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1