Examining collinearities

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Australian & New Zealand Journal of Statistics Pub Date : 2024-08-29 DOI:10.1111/anzs.12425
Zillur R. Shabuz, Paul H. Garthwaite
{"title":"Examining collinearities","authors":"Zillur R. Shabuz,&nbsp;Paul H. Garthwaite","doi":"10.1111/anzs.12425","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The cos-max method is a little-known method of identifying collinearities. It is based on the cos-max transformation, which makes minimal adjustment to a set of vectors to create orthogonal components with a one-to-one correspondence between the original vectors and the components. The aim of the transformation is that each vector should be close to the orthogonal component with which it is paired. Vectors involved in a collinearity must be adjusted substantially in order to create orthogonal components, while other vectors will typically be adjusted far less. The cos-max method uses the size of adjustments to identify collinearities. It gives a coherent relationship between collinear sets of variables and variance inflation factors (VIFs) and identifies collinear sets using more information than traditional methods. In this paper we describe these features of the method and examine its performance in examples, comparing it with alternative methods. In each example, the collinearities identified by the cos-max method only contained variables with high VIFs and contained all variables with high VIFs. The collinearities identified by other methods did not have such a close link to VIFs. Also, the collinearities identified by the cos-max method were as simple as or simpler than those given by other methods, with less overlap between collinearities in the variables that they contained.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12425","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The cos-max method is a little-known method of identifying collinearities. It is based on the cos-max transformation, which makes minimal adjustment to a set of vectors to create orthogonal components with a one-to-one correspondence between the original vectors and the components. The aim of the transformation is that each vector should be close to the orthogonal component with which it is paired. Vectors involved in a collinearity must be adjusted substantially in order to create orthogonal components, while other vectors will typically be adjusted far less. The cos-max method uses the size of adjustments to identify collinearities. It gives a coherent relationship between collinear sets of variables and variance inflation factors (VIFs) and identifies collinear sets using more information than traditional methods. In this paper we describe these features of the method and examine its performance in examples, comparing it with alternative methods. In each example, the collinearities identified by the cos-max method only contained variables with high VIFs and contained all variables with high VIFs. The collinearities identified by other methods did not have such a close link to VIFs. Also, the collinearities identified by the cos-max method were as simple as or simpler than those given by other methods, with less overlap between collinearities in the variables that they contained.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检查共线性
摘要 cos-max 法是一种鲜为人知的识别共线性的方法。它以 cos-max 变换为基础,对一组向量进行最小调整,以创建正交分量,并在原始向量和分量之间建立一一对应关系。变换的目的是使每个向量都能接近与其配对的正交分量。为了创建正交分量,必须对涉及共线性的向量进行大幅调整,而其他向量的调整幅度通常要小得多。cos-max 方法使用调整的大小来识别共线性。与传统方法相比,该方法在共线变量集和方差膨胀因子(VIF)之间给出了一种连贯的关系,并利用更多的信息来识别共线变量集。在本文中,我们介绍了该方法的这些特点,并通过实例检验了其性能,同时将其与其他方法进行了比较。在每个例子中,cos-max 方法识别出的共线性只包含高 VIF 的变量,也包含所有高 VIF 的变量。其他方法识别出的共线性与 VIF 没有如此密切的联系。此外,cos-max 方法确定的共线性与其他方法确定的共线性一样简单,甚至更简单,其包含的变量共线性之间的重叠较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Australian & New Zealand Journal of Statistics
Australian & New Zealand Journal of Statistics 数学-统计学与概率论
CiteScore
1.30
自引率
9.10%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association. The main body of the journal is divided into three sections. The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data. The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context. The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.
期刊最新文献
Issue Information Exact samples sizes for clinical trials subject to size and power constraints Examining collinearities Bayesian analysis of multivariate mixed longitudinal ordinal and continuous data Distributional modelling of positively skewed data via the flexible Weibull extension distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1