T. Onchi, H. Idei, K. Hanada, O. Watanabe, R. Miyata, Y. Zhang, Y. Koide, Y. Otsuka, T. Yamaguchi, A. Higashijima, T. Nagata, I. Sekiya, S. Shimabukuro, I. Niiya, K. Kono, F. Zennifa, K. Nakamura, R. Ikezoe, M. Hasegawa, K. Kuroda, Y. Nagashima, T. Ido, T. Kariya, A. Ejiri, S. Murakami, A. Fukuyama, Y. Kosuga
{"title":"Electron cyclotron current start-up using a retarding electric field in the QUEST spherical tokamak","authors":"T. Onchi, H. Idei, K. Hanada, O. Watanabe, R. Miyata, Y. Zhang, Y. Koide, Y. Otsuka, T. Yamaguchi, A. Higashijima, T. Nagata, I. Sekiya, S. Shimabukuro, I. Niiya, K. Kono, F. Zennifa, K. Nakamura, R. Ikezoe, M. Hasegawa, K. Kuroda, Y. Nagashima, T. Ido, T. Kariya, A. Ejiri, S. Murakami, A. Fukuyama, Y. Kosuga","doi":"10.1088/1741-4326/ad6914","DOIUrl":null,"url":null,"abstract":"The plasma current start-up experiment is conducted through electron cyclotron (EC) heating in the QUEST spherical tokamak. During the EC heating, the application of a toroidal electric field in the opposite direction to the plasma current effectively inhibits the growth of energetic electrons. Observations show rapid increases in plasma current and hard x-ray count immediately following the cancellation of the retarding electric field. When a compact tokamak configuration maintains equilibrium on the high field side, along with the retarding field, it leads to effective bulk electron heating. This heating achieved an electron temperature of <italic toggle=\"yes\">T</italic><sub>e</sub> ≈ 1 keV at electron density <italic toggle=\"yes\">n</italic><sub>e</sub> > 1.0 × 10<sup>18</sup> m<sup>−3</sup>. Ray tracing of the EC wave verifies that more power absorption into plasma through a single-pass occurs around the second resonance layer with higher values of electron density and temperature.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"28 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad6914","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The plasma current start-up experiment is conducted through electron cyclotron (EC) heating in the QUEST spherical tokamak. During the EC heating, the application of a toroidal electric field in the opposite direction to the plasma current effectively inhibits the growth of energetic electrons. Observations show rapid increases in plasma current and hard x-ray count immediately following the cancellation of the retarding electric field. When a compact tokamak configuration maintains equilibrium on the high field side, along with the retarding field, it leads to effective bulk electron heating. This heating achieved an electron temperature of Te ≈ 1 keV at electron density ne > 1.0 × 1018 m−3. Ray tracing of the EC wave verifies that more power absorption into plasma through a single-pass occurs around the second resonance layer with higher values of electron density and temperature.
期刊介绍:
Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes:
-the production, heating and confinement of high temperature plasmas;
-the physical properties of such plasmas;
-the experimental or theoretical methods of exploring or explaining them;
-fusion reactor physics;
-reactor concepts; and
-fusion technologies.
The journal has a dedicated Associate Editor for inertial confinement fusion.