Sol–gel elaboration and comprehensive characterization of CdFe2O4: an efficient photocatalyst for the visible light-driven degradation of malachite green and neutral red dyes
Salah Eddine Hachani, Sofiane Makhloufi, Achouak Achour, Adel Khiouani, Hanane Fodil, Sofia Laifaoui, Regadia Aissaoui, Zelikha Necira
{"title":"Sol–gel elaboration and comprehensive characterization of CdFe2O4: an efficient photocatalyst for the visible light-driven degradation of malachite green and neutral red dyes","authors":"Salah Eddine Hachani, Sofiane Makhloufi, Achouak Achour, Adel Khiouani, Hanane Fodil, Sofia Laifaoui, Regadia Aissaoui, Zelikha Necira","doi":"10.1007/s11144-024-02707-w","DOIUrl":null,"url":null,"abstract":"<p>We have successfully synthesized cadmium ferrite spinel CdFe<sub>2</sub>O<sub>4</sub> powder via the sol–gel route and meticulously evaluated its efficacy as a photocatalyst for the eradication of Green Malachite (MG) and Neutral Red (NR) dyes from wastewater. Our synthesized samples underwent comprehensive characterization employing a suite of analytical techniques including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, and UV–Visible measurements. The XRD analysis unequivocally confirmed the formation of CdFe<sub>2</sub>O<sub>4</sub> at 700 °C, showcasing a distinct cubic phase structure. Moreover, FTIR spectroscopy unveiled two typical bands at 412 cm<sup>−1</sup> and 603 cm<sup>−1</sup> for the studied spinel. SEM imaging revealed a unique microstructure characterized by aggregated pseudo-spherical grains of varying sizes and a plethora of pores. BET analysis demonstrated that the prepared CdFe<sub>2</sub>O4 powder boasted a substantial specific surface area of 9.58 m<sup>2</sup>/g along with a notable pore volume. Our optical and photocatalytic assessments elucidated CdFe<sub>2</sub>O<sub>4</sub> spinel powder as a semiconductor material featuring a band gap of 2.37 eV, showcasing commendable photocatalytic activity against the targeted dyes. Noteworthy is the attainment of a remarkable removal efficiency of 79.07% for MG and 92.34% for NR following a mere 180 min of exposure to visible light irradiation.</p>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"10 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11144-024-02707-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We have successfully synthesized cadmium ferrite spinel CdFe2O4 powder via the sol–gel route and meticulously evaluated its efficacy as a photocatalyst for the eradication of Green Malachite (MG) and Neutral Red (NR) dyes from wastewater. Our synthesized samples underwent comprehensive characterization employing a suite of analytical techniques including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, and UV–Visible measurements. The XRD analysis unequivocally confirmed the formation of CdFe2O4 at 700 °C, showcasing a distinct cubic phase structure. Moreover, FTIR spectroscopy unveiled two typical bands at 412 cm−1 and 603 cm−1 for the studied spinel. SEM imaging revealed a unique microstructure characterized by aggregated pseudo-spherical grains of varying sizes and a plethora of pores. BET analysis demonstrated that the prepared CdFe2O4 powder boasted a substantial specific surface area of 9.58 m2/g along with a notable pore volume. Our optical and photocatalytic assessments elucidated CdFe2O4 spinel powder as a semiconductor material featuring a band gap of 2.37 eV, showcasing commendable photocatalytic activity against the targeted dyes. Noteworthy is the attainment of a remarkable removal efficiency of 79.07% for MG and 92.34% for NR following a mere 180 min of exposure to visible light irradiation.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.