Recent advance progress of HL-3 experiments

IF 3.5 1区 物理与天体物理 Q1 PHYSICS, FLUIDS & PLASMAS Nuclear Fusion Pub Date : 2024-09-02 DOI:10.1088/1741-4326/ad6e9e
X.R. Duan, M. Xu, W.L. Zhong, X.Q. Ji, W. Chen, Z.B. Shi, X.L. Liu, B. Lu, B. Li, Y.Q. Wang, J.Q. Li, G.Y. Zheng, Yong Liu, Q.W. Yang, L.W. Yan, L.J. Cai, Q. Li, Y. Liu, X.Y. Bai, Z. Cao, X. Chen, H.T. Chen, Y.H. Chen, G.Q. Dong, H.L. Du, D.M. Fan, J.M. Gao, S.F. Geng, G.Z. Hao, H.M. He, M. Huang, M. Jiang, R. Ke, A.S. Liang, J.X. Li, Qing Li, Yongge Li, L.C. Li, H.J. Li, W.B. Li, D.Q. Liu, T. Long, L.F. Lu, L. Nie, P.W. Shi, J.F. Peng, A.P. Sun, T.F. Sun, R.H. Tong, H.L. Wei, S. Wang, G.L. Xiao, X.P. Xiao, L. Xue, H.B. Xu, Z.Y. Yang, D.L. Yu, L.M. Yu, Y.P. Zhang, X. Zheng, L. Zhang, Y. Zhang, F. Zhang, X.L. Zhang, HL-3 Team & Collaborators2345678910111213141516171819
{"title":"Recent advance progress of HL-3 experiments","authors":"X.R. Duan, M. Xu, W.L. Zhong, X.Q. Ji, W. Chen, Z.B. Shi, X.L. Liu, B. Lu, B. Li, Y.Q. Wang, J.Q. Li, G.Y. Zheng, Yong Liu, Q.W. Yang, L.W. Yan, L.J. Cai, Q. Li, Y. Liu, X.Y. Bai, Z. Cao, X. Chen, H.T. Chen, Y.H. Chen, G.Q. Dong, H.L. Du, D.M. Fan, J.M. Gao, S.F. Geng, G.Z. Hao, H.M. He, M. Huang, M. Jiang, R. Ke, A.S. Liang, J.X. Li, Qing Li, Yongge Li, L.C. Li, H.J. Li, W.B. Li, D.Q. Liu, T. Long, L.F. Lu, L. Nie, P.W. Shi, J.F. Peng, A.P. Sun, T.F. Sun, R.H. Tong, H.L. Wei, S. Wang, G.L. Xiao, X.P. Xiao, L. Xue, H.B. Xu, Z.Y. Yang, D.L. Yu, L.M. Yu, Y.P. Zhang, X. Zheng, L. Zhang, Y. Zhang, F. Zhang, X.L. Zhang, HL-3 Team & Collaborators2345678910111213141516171819","doi":"10.1088/1741-4326/ad6e9e","DOIUrl":null,"url":null,"abstract":"Since the first plasma realized in 2020, a series of key systems on HL-3 (known as HL-2M before) tokamak have been equipped/upgraded, including in-vessel components (the first wall, lower divertor, and toroidal cryogenic/water-cooling/baking/glow discharge systems, etc.), auxiliary heating system of 11 MW, and 28 diagnostic systems (to measure the plasma density, electron temperature, radiation, magnetic field, etc.). Magnet field systems were commissioned firstly for divertor plasma discharges. During the 2nd experimental campaign of HL-3 tokamak, several great progresses have been achieved. Firstly, the successful operation with plasma current larger than 1 MA was achieved under a divertor configuration. Secondly, the advanced divertor concept with two distinct snowflake configurations was realized. It is found that the distribution of ion saturation current and heat flux on bottom plate becomes wide due to magnetic surface expansion, demonstrating the advantage of such configuration in the heat flux mitigation. In addition, using the combination of NBI, ECRH and LHCD, the standard sawtoothing high confinement mode of megampere plasma was firstly accessed on the HL-3. The successful commissioning of HL-3 is beneficial for the initial operation of ITER.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"31 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad6e9e","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Since the first plasma realized in 2020, a series of key systems on HL-3 (known as HL-2M before) tokamak have been equipped/upgraded, including in-vessel components (the first wall, lower divertor, and toroidal cryogenic/water-cooling/baking/glow discharge systems, etc.), auxiliary heating system of 11 MW, and 28 diagnostic systems (to measure the plasma density, electron temperature, radiation, magnetic field, etc.). Magnet field systems were commissioned firstly for divertor plasma discharges. During the 2nd experimental campaign of HL-3 tokamak, several great progresses have been achieved. Firstly, the successful operation with plasma current larger than 1 MA was achieved under a divertor configuration. Secondly, the advanced divertor concept with two distinct snowflake configurations was realized. It is found that the distribution of ion saturation current and heat flux on bottom plate becomes wide due to magnetic surface expansion, demonstrating the advantage of such configuration in the heat flux mitigation. In addition, using the combination of NBI, ECRH and LHCD, the standard sawtoothing high confinement mode of megampere plasma was firstly accessed on the HL-3. The successful commissioning of HL-3 is beneficial for the initial operation of ITER.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HL-3 实验的最新进展
自 2020 年实现首次等离子体放电以来,HL-3(之前称作 HL-2M)托卡马克上的一系列关键系统已经装备/升级,包括舱内组件(第一壁、下岔道和环形低温/水冷/烘烤/辉光放电系统等)、11 兆瓦辅助加热系统和 28 个诊断系统(用于测量等离子体密度、电子温度、辐射、磁场等)。磁场系统首先用于分流器等离子体放电。在 HL-3 托卡马克的第二次实验活动中,取得了多项重大进展。首先,在分流器配置下成功实现了等离子体电流大于 1 MA 的运行。其次,实现了具有两种不同雪花构型的先进分流器概念。研究发现,由于磁性表面膨胀,离子饱和电流和热通量在底板上的分布变得很宽,这证明了这种配置在减缓热通量方面的优势。此外,利用 NBI、ECRH 和 LHCD 组合,在 HL-3 上首次实现了兆帕等离子体的标准锯齿高约束模式。HL-3 的成功调试有利于热核实验堆的初期运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Fusion
Nuclear Fusion 物理-物理:核物理
CiteScore
6.30
自引率
39.40%
发文量
411
审稿时长
2.6 months
期刊介绍: Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes: -the production, heating and confinement of high temperature plasmas; -the physical properties of such plasmas; -the experimental or theoretical methods of exploring or explaining them; -fusion reactor physics; -reactor concepts; and -fusion technologies. The journal has a dedicated Associate Editor for inertial confinement fusion.
期刊最新文献
Characterization of highly radiating nitrogen-seeded H-mode plasmas in unfavorable B T at ASDEX Upgrade Evolution of low-mode asymmetries introduced by x-ray P2 drive asymmetry during double shell implosions on the SG facility Tokamak edge-SOL turbulence in H-mode conditions simulated with a global, electromagnetic, transcollisional drift-fluid model The core–edge integrated neon-seeded scenario in deuterium–tritium at JET A self-organised partition of the high dimensional plasma parameter space for plasma disruption prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1