{"title":"Semi-analytical modeling of prompt redeposition in a steady-state plasma","authors":"L. Cappelli, N. Fedorczak, E. Serre","doi":"10.1088/1741-4326/ad6c5e","DOIUrl":null,"url":null,"abstract":"A steady-state, 1D semi-analytical model for prompt redeposition based on the separation between redeposition caused by the electric field in the sheath and redeposition related to gyromotion is here described. The model allows for the estimation of not only the fraction of promptly redeposited flux but also the energy and angular distribution of the non-promptly redeposited population, along with their average charge state. Thus, the temperature and mean parallel-to-B velocity of the non-promptly redeposited flux are also available. The semi-analytical model was validated against equivalent Monte Carlo simulations across a broad range of input parameters. In this paper the eroded material under exam was tungsten (W) for which the code demonstrated consistent agreement with respect to numerical results, within its defined validity limits. The model can theoretically provide a solution for any material, temperature and electron density profile in the sheath, monotonic potential drop profile, and sputtered particles energy and angular distribution at the wall. As such, this code emerges as a potential tool for addressing the boundary redeposition phenomenon in fluid impurity transport simulations.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"64 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad6c5e","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
A steady-state, 1D semi-analytical model for prompt redeposition based on the separation between redeposition caused by the electric field in the sheath and redeposition related to gyromotion is here described. The model allows for the estimation of not only the fraction of promptly redeposited flux but also the energy and angular distribution of the non-promptly redeposited population, along with their average charge state. Thus, the temperature and mean parallel-to-B velocity of the non-promptly redeposited flux are also available. The semi-analytical model was validated against equivalent Monte Carlo simulations across a broad range of input parameters. In this paper the eroded material under exam was tungsten (W) for which the code demonstrated consistent agreement with respect to numerical results, within its defined validity limits. The model can theoretically provide a solution for any material, temperature and electron density profile in the sheath, monotonic potential drop profile, and sputtered particles energy and angular distribution at the wall. As such, this code emerges as a potential tool for addressing the boundary redeposition phenomenon in fluid impurity transport simulations.
期刊介绍:
Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes:
-the production, heating and confinement of high temperature plasmas;
-the physical properties of such plasmas;
-the experimental or theoretical methods of exploring or explaining them;
-fusion reactor physics;
-reactor concepts; and
-fusion technologies.
The journal has a dedicated Associate Editor for inertial confinement fusion.