Complexity-Optimal and Parameter-Free First-Order Methods for Finding Stationary Points of Composite Optimization Problems

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-09-04 DOI:10.1137/22m1498826
Weiwei Kong
{"title":"Complexity-Optimal and Parameter-Free First-Order Methods for Finding Stationary Points of Composite Optimization Problems","authors":"Weiwei Kong","doi":"10.1137/22m1498826","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 3005-3032, September 2024. <br/> Abstract. This paper develops and analyzes an accelerated proximal descent method for finding stationary points of nonconvex composite optimization problems. The objective function is of the form [math], where [math] is a proper closed convex function, [math] is a differentiable function on the domain of [math], and [math] is Lipschitz continuous on the domain of [math]. The main advantage of this method is that it is “parameter-free” in the sense that it does not require knowledge of the Lipschitz constant of [math] or of any global topological properties of [math]. It is shown that the proposed method can obtain an [math]-approximate stationary point with iteration complexity bounds that are optimal, up to logarithmic terms over [math], in both the convex and nonconvex settings. Some discussion is also given about how the proposed method can be leveraged in other existing optimization frameworks, such as min-max smoothing and penalty frameworks for constrained programming, to create more specialized parameter-free methods. Finally, numerical experiments are presented to support the practical viability of the method.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1498826","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 3, Page 3005-3032, September 2024.
Abstract. This paper develops and analyzes an accelerated proximal descent method for finding stationary points of nonconvex composite optimization problems. The objective function is of the form [math], where [math] is a proper closed convex function, [math] is a differentiable function on the domain of [math], and [math] is Lipschitz continuous on the domain of [math]. The main advantage of this method is that it is “parameter-free” in the sense that it does not require knowledge of the Lipschitz constant of [math] or of any global topological properties of [math]. It is shown that the proposed method can obtain an [math]-approximate stationary point with iteration complexity bounds that are optimal, up to logarithmic terms over [math], in both the convex and nonconvex settings. Some discussion is also given about how the proposed method can be leveraged in other existing optimization frameworks, such as min-max smoothing and penalty frameworks for constrained programming, to create more specialized parameter-free methods. Finally, numerical experiments are presented to support the practical viability of the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寻找复合优化问题驻点的自洽最优和无参数一阶方法
SIAM 优化期刊》,第 34 卷第 3 期,第 3005-3032 页,2024 年 9 月。 摘要本文开发并分析了一种用于寻找非凸复合优化问题静止点的加速近似下降法。目标函数的形式为[math],其中[math]为适当的闭凸函数,[math]为[math]域上的可微分函数,[math]为[math]域上的 Lipschitz 连续函数。这种方法的主要优点是 "无参数",即不需要知道 [math] 的 Lipschitz 常量或 [math] 的任何全局拓扑性质。结果表明,所提出的方法可以获得[math]近似静止点,其迭代复杂度边界在凸和非凸环境下都是最优的,达到[math]的对数项。此外,还讨论了如何在其他现有优化框架中利用所提出的方法,如最小平滑和约束编程的惩罚框架,以创建更专业的无参数方法。最后,还介绍了数值实验,以支持该方法的实际可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1