Neutralization and Stability of JN.1-derived LB.1, KP.2.3, KP.3 and KP.3.1.1 Subvariants

Pei Li, Julia N. Faraone, Cheng Chih Hsu, Michelle Chamblee, Yajie Liu, Yi-Min Zheng, Yan Xu, Claire Carlin, Jeffrey C. Horowitz, Rama K. Mallampalli, Linda J. Saif, Eugene M. Oltz, Daniel Jones, Jianrong Li, Richard J. Gumina, Joseph S. Bednash, Kai Xu, Shan-Lu Liu
{"title":"Neutralization and Stability of JN.1-derived LB.1, KP.2.3, KP.3 and KP.3.1.1 Subvariants","authors":"Pei Li, Julia N. Faraone, Cheng Chih Hsu, Michelle Chamblee, Yajie Liu, Yi-Min Zheng, Yan Xu, Claire Carlin, Jeffrey C. Horowitz, Rama K. Mallampalli, Linda J. Saif, Eugene M. Oltz, Daniel Jones, Jianrong Li, Richard J. Gumina, Joseph S. Bednash, Kai Xu, Shan-Lu Liu","doi":"10.1101/2024.09.04.611219","DOIUrl":null,"url":null,"abstract":"During the summer of 2024, COVID-19 cases surged globally, driven by variants derived from JN.1 subvariants of SARS-CoV-2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2, and increased resistance to elevated temperatures. Molecular modeling suggests that the DelS31 mutation induces a conformational change that stabilizes the NTD and strengthens the NTD-Receptor-Binding Domain (RBD) interaction, thus favoring the down conformation of RBD and reducing accessibility to both the ACE2 receptor and certain nAbs. Additionally, the DelS31 mutation introduces an N-linked glycan modification at N30, which shields the underlying NTD region from antibody recognition. Our data highlight the critical role of NTD mutations in the spike protein for nAb evasion, stability, and viral infectivity, and suggest consideration of updating COVID-19 vaccines with antigens containing DelS31.","PeriodicalId":501108,"journal":{"name":"bioRxiv - Molecular Biology","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.611219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During the summer of 2024, COVID-19 cases surged globally, driven by variants derived from JN.1 subvariants of SARS-CoV-2 that feature new mutations, particularly in the N-terminal domain (NTD) of the spike protein. In this study, we report on the neutralizing antibody (nAb) escape, infectivity, fusion, and stability of these subvariants-LB.1, KP.2.3, KP.3, and KP.3.1.1. Our findings demonstrate that all of these subvariants are highly evasive of nAbs elicited by the bivalent mRNA vaccine, the XBB.1.5 monovalent mumps virus-based vaccine, or from infections during the BA.2.86/JN.1 wave. This reduction in nAb titers is primarily driven by a single serine deletion (DelS31) in the NTD of the spike, leading to a distinct antigenic profile compared to the parental JN.1 and other variants. We also found that the DelS31 mutation decreases pseudovirus infectivity in CaLu-3 cells, which correlates with impaired cell-cell fusion. Additionally, the spike protein of DelS31 variants appears more conformationally stable, as indicated by reduced S1 shedding both with and without stimulation by soluble ACE2, and increased resistance to elevated temperatures. Molecular modeling suggests that the DelS31 mutation induces a conformational change that stabilizes the NTD and strengthens the NTD-Receptor-Binding Domain (RBD) interaction, thus favoring the down conformation of RBD and reducing accessibility to both the ACE2 receptor and certain nAbs. Additionally, the DelS31 mutation introduces an N-linked glycan modification at N30, which shields the underlying NTD region from antibody recognition. Our data highlight the critical role of NTD mutations in the spike protein for nAb evasion, stability, and viral infectivity, and suggest consideration of updating COVID-19 vaccines with antigens containing DelS31.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JN.1 衍生的 LB.1、KP.2.3、KP.3 和 KP.3.1.1 亚变体的中和与稳定性
2024 年夏季,COVID-19 病例在全球激增,其驱动力来自 SARS-CoV-2 的 JN.1 亚变体,这些变体具有新的突变,尤其是在尖峰蛋白的 N 端结构域 (NTD) 中。在本研究中,我们报告了这些亚变体--LB.1、KP.2.3、KP.3 和 KP.3.1.1 的中和抗体(nAb)逃逸、感染性、融合和稳定性。我们的研究结果表明,所有这些亚变体都对二价 mRNA 疫苗、XBB.1.5 单价腮腺炎病毒疫苗或 BA.2.86/JN.1 波感染诱发的 nAb 有很强的规避性。这种 nAb 滴度的降低主要是由尖峰的 NTD 中的单丝氨酸缺失(DelS31)引起的,与亲本 JN.1 和其他变体相比,这种缺失导致了不同的抗原特征。我们还发现,DelS31 突变会降低伪病毒在 CaLu-3 细胞中的感染性,这与细胞-细胞融合受损有关。此外,DelS31变体的尖峰蛋白在构象上似乎更稳定,在可溶性ACE2的刺激下和不刺激下S1脱落都会减少,而且对高温的抵抗力也会增强。分子建模表明,DelS31 突变诱导了一种构象变化,稳定了 NTD 并加强了 NTD 与受体结合域(RBD)的相互作用,从而有利于 RBD 的向下构象,降低了与 ACE2 受体和某些 nAbs 的可及性。此外,DelS31 突变在 N30 处引入了一个 N-连接的聚糖修饰,从而保护了底层 NTD 区域不被抗体识别。我们的数据强调了尖峰蛋白中的NTD突变对nAb逃避、稳定性和病毒传染性的关键作用,并建议考虑用含有DelS31的抗原更新COVID-19疫苗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transcriptomic landscape of sex differences in obesity and type 2 diabetes in subcutaneous adipose tissue U2AF regulates the translation and localization of nuclear-encoded mitochondrial mRNAs Core splicing architecture and early spliceosomal recognition determine microexon sensitivity to SRRM3/4 CRISPR/Cas9-induced breaks are insufficient to break linkage drag surrounding the ToMV locus of Solanum lycopersicum Medin Induces Pro-Inflammatory Activation of Human Brain Vascular Smooth Muscle Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1