Viscoelastic fluid flow in a slowly varying planar contraction: the role of finite extensibility on the pressure drop

Bimalendu Mahapatra, Tachin Ruangkriengsin, Howard A. Stone, Evgeniy Boyko
{"title":"Viscoelastic fluid flow in a slowly varying planar contraction: the role of finite extensibility on the pressure drop","authors":"Bimalendu Mahapatra, Tachin Ruangkriengsin, Howard A. Stone, Evgeniy Boyko","doi":"arxiv-2409.08150","DOIUrl":null,"url":null,"abstract":"We analyze the steady viscoelastic fluid flow in slowly varying contracting\nchannels of arbitrary shape and present a theory based on the lubrication\napproximation for calculating the flow rate-pressure drop relation at low and\nhigh Deborah ($De$) numbers. Unlike most prior theoretical studies leveraging\nthe Oldroyd-B model, we describe the fluid viscoelasticity using a FENE-CR\nmodel and examine how the polymer chains' finite extensibility impacts the\npressure drop. We employ the low-Deborah-number lubrication analysis to provide\nanalytical expressions for the pressure drop up to $O(De^4)$. We further\nconsider the ultra-dilute limit and exploit a one-way coupling between the\nparabolic velocity and elastic stresses to calculate the pressure drop of the\nFENE-CR fluid for arbitrary values of the Deborah number. Such an approach\nallows us to elucidate elastic stress contributions governing the pressure drop\nvariations and the effect of finite extensibility for all $De$. We validate our\ntheoretical predictions with two-dimensional numerical simulations and find\nexcellent agreement. We show that, at low Deborah numbers, the pressure drop of\nthe FENE-CR fluid monotonically decreases with $De$, similar to the previous\nresults for the Oldroyd-B and FENE-P fluids. However, at high Deborah numbers,\nin contrast to a linear decrease for the Oldroyd-B fluid, the pressure drop of\nthe FENE-CR fluid exhibits a non-monotonic variation due to finite\nextensibility, first decreasing and then increasing with $De$. Nevertheless,\neven at sufficiently high Deborah numbers, the pressure drop of the FENE-CR\nfluid in the ultra-dilute and lubrication limits is lower than the\ncorresponding Newtonian pressure drop.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the steady viscoelastic fluid flow in slowly varying contracting channels of arbitrary shape and present a theory based on the lubrication approximation for calculating the flow rate-pressure drop relation at low and high Deborah ($De$) numbers. Unlike most prior theoretical studies leveraging the Oldroyd-B model, we describe the fluid viscoelasticity using a FENE-CR model and examine how the polymer chains' finite extensibility impacts the pressure drop. We employ the low-Deborah-number lubrication analysis to provide analytical expressions for the pressure drop up to $O(De^4)$. We further consider the ultra-dilute limit and exploit a one-way coupling between the parabolic velocity and elastic stresses to calculate the pressure drop of the FENE-CR fluid for arbitrary values of the Deborah number. Such an approach allows us to elucidate elastic stress contributions governing the pressure drop variations and the effect of finite extensibility for all $De$. We validate our theoretical predictions with two-dimensional numerical simulations and find excellent agreement. We show that, at low Deborah numbers, the pressure drop of the FENE-CR fluid monotonically decreases with $De$, similar to the previous results for the Oldroyd-B and FENE-P fluids. However, at high Deborah numbers, in contrast to a linear decrease for the Oldroyd-B fluid, the pressure drop of the FENE-CR fluid exhibits a non-monotonic variation due to finite extensibility, first decreasing and then increasing with $De$. Nevertheless, even at sufficiently high Deborah numbers, the pressure drop of the FENE-CR fluid in the ultra-dilute and lubrication limits is lower than the corresponding Newtonian pressure drop.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缓慢变化的平面收缩中的粘弹性流体流动:有限延伸性对压力降的作用
我们分析了任意形状的缓慢变化收缩通道中的稳定粘弹性流体流动,并提出了一种基于润滑近似法的理论,用于计算低Deborah ($De$)数和高Deborah ($De$)数下的流速-压降关系。与之前大多数利用 Oldroyd-B 模型的理论研究不同,我们使用 FENE-CR 模型来描述流体粘弹性,并研究聚合物链的有限延伸性如何影响压降。我们采用低德博拉数润滑分析方法,提供了高达 $O(De^4)$ 的压降分析表达式。我们进一步考虑了超稀释极限,并利用抛物线速度和弹性应力之间的单向耦合,计算了德博拉数任意值下的 FENE-CR 流体压降。通过这种方法,我们可以阐明弹性应力对压力降变化的影响,以及有限延伸性对所有 De$的影响。我们用二维数值模拟验证了我们的理论预测,发现两者非常吻合。我们发现,在低德博拉数时,FENE-CR 流体的压降随 $De$ 单调下降,这与之前对 Oldroyd-B 和 FENE-P 流体的研究结果类似。然而,与 Oldroyd-B 流体的线性下降相反,在高 Deborah 数下,FENE-CR 流体的压降因有限延伸性而呈现出非单调变化,先随 $De$ 下降,后随 $De$ 增加。然而,即使在足够高的 Deborah 数下,FENE-CR 流体在超稀释和润滑极限下的压降也低于相应的牛顿压降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Additive-feature-attribution methods: a review on explainable artificial intelligence for fluid dynamics and heat transfer Direct and inverse cascades scaling in real shell models of turbulence A new complex fluid flow phenomenon: Bubbles-on-a-String Long-distance Liquid Transport Along Fibers Arising From Plateau-Rayleigh Instability Symmetry groups and invariant solutions of plane Poiseuille flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1