Hammering at the entropy: A GENERIC-guided approach to learning polymeric rheological constitutive equations using PINNs

David Nieto Simavilla, Andrea Bonfanti, Imanol García de Beristain, Pep Español, Marco Ellero
{"title":"Hammering at the entropy: A GENERIC-guided approach to learning polymeric rheological constitutive equations using PINNs","authors":"David Nieto Simavilla, Andrea Bonfanti, Imanol García de Beristain, Pep Español, Marco Ellero","doi":"arxiv-2409.07545","DOIUrl":null,"url":null,"abstract":"We present a versatile framework that employs Physics-Informed Neural\nNetworks (PINNs) to discover the entropic contribution that leads to the\nconstitutive equation for the extra-stress in rheological models of polymer\nsolutions. In this framework the training of the Neural Network is guided by an\nevolution equation for the conformation tensor which is GENERIC-compliant. We\ncompare two training methodologies for the data-driven PINN constitutive\nmodels: one trained on data from the analytical solution of the Oldroyd-B model\nunder steady-state rheometric flows (PINN-rheometric), and another trained on\nin-silico data generated from complex flow CFD simulations around a cylinder\nthat use the Oldroyd-B model (PINN-complex). The capacity of the PINN models to\nprovide good predictions are evaluated by comparison with CFD simulations using\nthe underlying Oldroyd-B model as a reference. Both models are capable of\npredicting flow behavior in transient and complex conditions; however, the\nPINN-complex model, trained on a broader range of mixed flow data, outperforms\nthe PINN-rheometric model in complex flow scenarios. The geometry agnostic\ncharacter of our methodology allows us to apply the learned PINN models to\nflows with different topologies than the ones used for training.","PeriodicalId":501125,"journal":{"name":"arXiv - PHYS - Fluid Dynamics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a versatile framework that employs Physics-Informed Neural Networks (PINNs) to discover the entropic contribution that leads to the constitutive equation for the extra-stress in rheological models of polymer solutions. In this framework the training of the Neural Network is guided by an evolution equation for the conformation tensor which is GENERIC-compliant. We compare two training methodologies for the data-driven PINN constitutive models: one trained on data from the analytical solution of the Oldroyd-B model under steady-state rheometric flows (PINN-rheometric), and another trained on in-silico data generated from complex flow CFD simulations around a cylinder that use the Oldroyd-B model (PINN-complex). The capacity of the PINN models to provide good predictions are evaluated by comparison with CFD simulations using the underlying Oldroyd-B model as a reference. Both models are capable of predicting flow behavior in transient and complex conditions; however, the PINN-complex model, trained on a broader range of mixed flow data, outperforms the PINN-rheometric model in complex flow scenarios. The geometry agnostic character of our methodology allows us to apply the learned PINN models to flows with different topologies than the ones used for training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锤击熵:利用 PINNs 学习聚合物流变构造方程的 GENERIC 引导方法
我们提出了一个多功能框架,利用物理信息神经网络(PINNs)来发现熵贡献,从而得出聚合物溶液流变模型中的外应力构成方程。在此框架下,神经网络的训练由符合 GENERIC 标准的构象张量演化方程指导。我们对数据驱动的 PINN 构成模型的两种训练方法进行了比较:一种是根据稳态流变流下 Oldroyd-B 模型的解析解数据进行训练(PINN-rheometric),另一种是根据使用 Oldroyd-B 模型进行的圆柱体周围复杂流动 CFD 模拟生成的校内数据进行训练(PINN-complex)。通过与以 Oldroyd-B 模型为基准的 CFD 模拟进行比较,对 PINN 模型提供良好预测的能力进行了评估。这两个模型都能预测瞬态和复杂条件下的流动行为;但是,PINN-complex 模型是在更广泛的混合流数据基础上训练出来的,在复杂流动情况下的性能优于 PINN-Rheometric 模型。我们的方法具有几何不可知性,因此我们可以将学习到的 PINN 模型应用于拓扑结构不同于训练所用拓扑结构的流体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Additive-feature-attribution methods: a review on explainable artificial intelligence for fluid dynamics and heat transfer Direct and inverse cascades scaling in real shell models of turbulence A new complex fluid flow phenomenon: Bubbles-on-a-String Long-distance Liquid Transport Along Fibers Arising From Plateau-Rayleigh Instability Symmetry groups and invariant solutions of plane Poiseuille flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1