{"title":"Grid Controllability Aware Optimal Placement of PMUs With Limited Input Current Channels","authors":"Akash Kumar Mandal;Swades De;Bijaya Ketan Panigrahi","doi":"10.1109/TIA.2024.3452076","DOIUrl":null,"url":null,"abstract":"This paper introduces a new method for optimally placing phasor measurement units (PMUs) aimed at enhancing smart grid controllability under perturbed conditions while maintaining system observability. To address practical concerns, the approach assumes that each PMU has a limited number of input channels when determining the optimal number of PMUs needed. To achieve this optimality objective, a minimum cost constrained quadratic objective problem over a bounded decision domain is formulated with continuous relaxation for the discrete binary constraint. An information-theoretic viewpoint is taken for characterizing the robustness of grid estimation at the phasor data concentrator. A perturbation-resistant algorithm has been developed to achieve a globally optimal PMU placement solution. The effectiveness of the proposed smart grid monitoring method is confirmed through tests on IEEE 6, 14, 30, 57, and 118-bus systems. The findings reveal that, in contrast to traditional observability-focused PMU deployment, the proposed approach ensures system controllability under general perturbation scenarios while preserving grid observability at \n<inline-formula><tex-math>$\\approx 100\\%$</tex-math></inline-formula>\n, achieving a minimum mean squared error of \n<inline-formula><tex-math>$\\approx 10^{-3}$</tex-math></inline-formula>\n, and maintaining mutual information between estimated and measured attributes near 1 across all test cases.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"60 6","pages":"8532-8547"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10660528/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a new method for optimally placing phasor measurement units (PMUs) aimed at enhancing smart grid controllability under perturbed conditions while maintaining system observability. To address practical concerns, the approach assumes that each PMU has a limited number of input channels when determining the optimal number of PMUs needed. To achieve this optimality objective, a minimum cost constrained quadratic objective problem over a bounded decision domain is formulated with continuous relaxation for the discrete binary constraint. An information-theoretic viewpoint is taken for characterizing the robustness of grid estimation at the phasor data concentrator. A perturbation-resistant algorithm has been developed to achieve a globally optimal PMU placement solution. The effectiveness of the proposed smart grid monitoring method is confirmed through tests on IEEE 6, 14, 30, 57, and 118-bus systems. The findings reveal that, in contrast to traditional observability-focused PMU deployment, the proposed approach ensures system controllability under general perturbation scenarios while preserving grid observability at
$\approx 100\%$
, achieving a minimum mean squared error of
$\approx 10^{-3}$
, and maintaining mutual information between estimated and measured attributes near 1 across all test cases.
期刊介绍:
The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.