An Improved Subdomain Model for Optimizing Electromagnetic Performance of AFPM Machines

IF 4.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Industry Applications Pub Date : 2024-08-23 DOI:10.1109/TIA.2024.3448388
Wenming Tong;Deyi Cai;Shengnan Wu
{"title":"An Improved Subdomain Model for Optimizing Electromagnetic Performance of AFPM Machines","authors":"Wenming Tong;Deyi Cai;Shengnan Wu","doi":"10.1109/TIA.2024.3448388","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of the time-consuming calculation of finite element method (FEM) and the poor generalizability of existing subdomain models, an improved subdomain model that takes into account the slot-opening region and introduces periodicity coefficient to reduce the size of the coefficient matrix is proposed in this paper, which can accurately predict the electromagnetic performance of axial flux permanent magnet (AFPM) machines. Meanwhile, the application range of the proposed model for any pole-slot combinations is broadened by studying the distribution law of double-layer fractional slot concentrated windings (FSCW). In addition, an evolutionary algorithm is applied to achieve rapid optimization analysis in the preliminary design, the optimized result shows a significant reduction in cogging torque and an improvement in efficiency. Finally, the reliability and effectiveness of the developed analytical model is validated by both FEM and experiments. Compared with FEM, the calculation time is reduced by 98.92% while guaranteeing computational accuracy, which greatly facilitates the design and optimization of related types of motors.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"60 6","pages":"8745-8754"},"PeriodicalIF":4.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10645315/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of the time-consuming calculation of finite element method (FEM) and the poor generalizability of existing subdomain models, an improved subdomain model that takes into account the slot-opening region and introduces periodicity coefficient to reduce the size of the coefficient matrix is proposed in this paper, which can accurately predict the electromagnetic performance of axial flux permanent magnet (AFPM) machines. Meanwhile, the application range of the proposed model for any pole-slot combinations is broadened by studying the distribution law of double-layer fractional slot concentrated windings (FSCW). In addition, an evolutionary algorithm is applied to achieve rapid optimization analysis in the preliminary design, the optimized result shows a significant reduction in cogging torque and an improvement in efficiency. Finally, the reliability and effectiveness of the developed analytical model is validated by both FEM and experiments. Compared with FEM, the calculation time is reduced by 98.92% while guaranteeing computational accuracy, which greatly facilitates the design and optimization of related types of motors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化 AFPM 电机电磁性能的改进型子域模型
针对有限元法(FEM)计算耗时和现有子域模型通用性差的问题,本文提出了一种改进的子域模型,该模型考虑了开槽区域,并引入周期性系数以减小系数矩阵的大小,可以准确预测轴向磁通永磁(AFPM)机器的电磁性能。同时,通过研究双层分数槽集中绕组(FSCW)的分布规律,拓宽了所提模型对任何极槽组合的应用范围。此外,在初步设计中应用进化算法实现了快速优化分析,优化结果显示齿槽转矩显著降低,效率得到提高。最后,有限元分析和实验验证了所开发分析模型的可靠性和有效性。与有限元分析相比,在保证计算精度的前提下,计算时间缩短了 98.92%,极大地方便了相关类型电机的设计和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Industry Applications
IEEE Transactions on Industry Applications 工程技术-工程:电子与电气
CiteScore
9.90
自引率
9.10%
发文量
747
审稿时长
3.3 months
期刊介绍: The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.
期刊最新文献
Table of Contents Table of Contents IEEE Transactions on Industry Applications Publication Information IEEE Transactions on Industry Applications Information for Authors IEEE Industry Applications Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1