Van-Truc Nguyen, Nguyen Duy Dat, Quoc-Hoang Do, Vu-Anh Le, Quoc-Minh Truong, Thanh-Binh Nguyen, Anh Thi Kim Tran, My Linh Nguyen, Nhung Thi-Tuyet Hoang, Tran Thi Ai My, Thi-Dieu-Hien Vo
{"title":"Modified Sucrose Biochar Goethite (α-FeOOH): A Potential Adsorbent for Methylene Blue Removal","authors":"Van-Truc Nguyen, Nguyen Duy Dat, Quoc-Hoang Do, Vu-Anh Le, Quoc-Minh Truong, Thanh-Binh Nguyen, Anh Thi Kim Tran, My Linh Nguyen, Nhung Thi-Tuyet Hoang, Tran Thi Ai My, Thi-Dieu-Hien Vo","doi":"10.1007/s11814-024-00237-8","DOIUrl":null,"url":null,"abstract":"<div><p>The primary purpose of this study is to synthesize biochar (Fe-SB) derived from sucrose through hydrothermal carbonization coupling with goethite activation and utilize it as an adsorbent to remove methylene blue (MB). FTIR, SEM, and BET were used to analyze the biochar characterization. Factors affecting the adsorption of MB on Fe-SB, including temperature, pH, salt, and different water sources, were also meticulously investigated. SEM results indicate that the morphology of the biochar derived from sucrose has a spherical shape, and the goethite crystal has a needle-like structure that successfully deposits on the adsorbent. The specific surface area of Fe-SB is 568 m<sup>2</sup>/g and contains enormous functional groups of O–H, C = C, and C–O. In the condition of pH 8, Fe-SB had a maximum adsorption capability of 476.2 mg/g. The adsorption capacity of biochar for MB removal consists of various adsorption mechanisms. In conclusion, Fe-SB, a novel material, pinpoints a promising and environmentally friendly adsorbent for the removal of MB from aquatic environment.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"41 11","pages":"3127 - 3138"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00237-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The primary purpose of this study is to synthesize biochar (Fe-SB) derived from sucrose through hydrothermal carbonization coupling with goethite activation and utilize it as an adsorbent to remove methylene blue (MB). FTIR, SEM, and BET were used to analyze the biochar characterization. Factors affecting the adsorption of MB on Fe-SB, including temperature, pH, salt, and different water sources, were also meticulously investigated. SEM results indicate that the morphology of the biochar derived from sucrose has a spherical shape, and the goethite crystal has a needle-like structure that successfully deposits on the adsorbent. The specific surface area of Fe-SB is 568 m2/g and contains enormous functional groups of O–H, C = C, and C–O. In the condition of pH 8, Fe-SB had a maximum adsorption capability of 476.2 mg/g. The adsorption capacity of biochar for MB removal consists of various adsorption mechanisms. In conclusion, Fe-SB, a novel material, pinpoints a promising and environmentally friendly adsorbent for the removal of MB from aquatic environment.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.