Reconciling heterogeneous dengue virus infection risk estimates from different study designs

Angkana T. Huang, Darunee Buddhari, Surachai Kaewhiran, Sopon Iamsirithaworn, Direk Khampaen, Aaron Farmer, Stefan Fernandez, Stephen J. Thomas, Isabel Rodriguez-Barraquer, Taweewun Hunsawong, Anon Srikiatkhachorn, Gabriel Ribeiro dos Santos, Megan O'Driscoll, Marco Hamins-Puertolas, Timothy Endy, Alan L. Rothman, Derek A. T. Cummings, Kathryn Anderson, Henrik Salje
{"title":"Reconciling heterogeneous dengue virus infection risk estimates from different study designs","authors":"Angkana T. Huang, Darunee Buddhari, Surachai Kaewhiran, Sopon Iamsirithaworn, Direk Khampaen, Aaron Farmer, Stefan Fernandez, Stephen J. Thomas, Isabel Rodriguez-Barraquer, Taweewun Hunsawong, Anon Srikiatkhachorn, Gabriel Ribeiro dos Santos, Megan O'Driscoll, Marco Hamins-Puertolas, Timothy Endy, Alan L. Rothman, Derek A. T. Cummings, Kathryn Anderson, Henrik Salje","doi":"10.1101/2024.09.09.24313375","DOIUrl":null,"url":null,"abstract":"Uncovering rates at which susceptible individuals become infected with a pathogen, i.e. the force of infection (FOI), is essential for assessing transmission risk and reconstructing distribution of immunity in a population. For dengue, reconstructing exposure and susceptibility statuses from the measured FOI is of particular significance as prior exposure is a strong risk factor for severe disease. FOI can be measured via many study designs. Longitudinal serology are considered gold standard measurements, as they directly track the transition of seronegative individuals to seropositive due to incident infections (seroincidence). Cross-sectional serology can provide estimates of FOI by contrasting seroprevalence across ages. Age of reported cases can also be used to infer FOI. Agreement of these measurements, however, have not been assessed. Using 26 years of data from cohort studies and hospital-attended cases from Kamphaeng Phet province, Thailand, we found FOI estimates from the three sources to be highly inconsistent. Annual FOI estimates from seroincidence was 2.46 to 4.33-times higher than case-derived FOI. Correlation between seroprevalence-derived and case-derived FOI was moderate (correlation coefficient=0.46) and no systematic bias. Through extensive simulations and theoretical analysis, we show that incongruences between methods can result from failing to account for dengue antibody kinetics, assay noise, and heterogeneity in FOI across ages. Extending standard inference models to include these processes reconciled the FOI and susceptibility estimates. Our results highlight the importance of comparing inferences across multiple data types to uncover additional insights not attainable through a single data type/analysis.","PeriodicalId":501071,"journal":{"name":"medRxiv - Epidemiology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.09.24313375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Uncovering rates at which susceptible individuals become infected with a pathogen, i.e. the force of infection (FOI), is essential for assessing transmission risk and reconstructing distribution of immunity in a population. For dengue, reconstructing exposure and susceptibility statuses from the measured FOI is of particular significance as prior exposure is a strong risk factor for severe disease. FOI can be measured via many study designs. Longitudinal serology are considered gold standard measurements, as they directly track the transition of seronegative individuals to seropositive due to incident infections (seroincidence). Cross-sectional serology can provide estimates of FOI by contrasting seroprevalence across ages. Age of reported cases can also be used to infer FOI. Agreement of these measurements, however, have not been assessed. Using 26 years of data from cohort studies and hospital-attended cases from Kamphaeng Phet province, Thailand, we found FOI estimates from the three sources to be highly inconsistent. Annual FOI estimates from seroincidence was 2.46 to 4.33-times higher than case-derived FOI. Correlation between seroprevalence-derived and case-derived FOI was moderate (correlation coefficient=0.46) and no systematic bias. Through extensive simulations and theoretical analysis, we show that incongruences between methods can result from failing to account for dengue antibody kinetics, assay noise, and heterogeneity in FOI across ages. Extending standard inference models to include these processes reconciled the FOI and susceptibility estimates. Our results highlight the importance of comparing inferences across multiple data types to uncover additional insights not attainable through a single data type/analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协调不同研究设计得出的不同登革热病毒感染风险估计值
揭示易感个体感染病原体的比率,即感染力(FOI),对于评估传播风险和重建人群免疫分布至关重要。对于登革热而言,根据测得的 FOI 重建暴露和易感状态尤为重要,因为之前的暴露是导致严重疾病的一个重要风险因素。FOI 可以通过多种研究设计来测量。纵向血清学被认为是金标准测量方法,因为它们可直接跟踪血清阴性个体因偶发感染(血清发生率)而转变为血清阳性个体的过程。横断面血清学可通过对比不同年龄段的血清流行率来估算 FOI。报告病例的年龄也可用于推断 FOI。然而,这些测量方法的一致性尚未得到评估。通过使用来自泰国甘榜披省队列研究和医院就诊病例的 26 年数据,我们发现这三种来源的 FOI 估计值极不一致。从血清发生率估算出的年 FOI 是病例得出的 FOI 的 2.46 至 4.33 倍。血清流行率得出的 FOI 与病例得出的 FOI 之间的相关性适中(相关系数=0.46),不存在系统性偏差。通过大量的模拟和理论分析,我们表明,由于未能考虑登革热抗体动力学、检测噪音和不同年龄段 FOI 的异质性,可能会导致不同方法之间的不一致性。扩展标准推理模型,将这些过程包括在内,可以协调 FOI 和易感性估计值。我们的研究结果凸显了比较多种数据类型的推论以发现单一数据类型/分析无法获得的更多见解的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Climate Change and Malaria: A Call for Robust Analytics Female Infertility and Neurodevelopmental Disorders in Children: associations and evidence for familial confounding in Denmark Surveillance and control of neglected zoonotic diseases: methodological approaches to studying Rift Valley Fever, Crimean-Congo Haemorrhagic Fever and Brucellosis at the human-livestock-wildlife interface across diverse agricultural systems in Uganda Climate variation and serotype competition drive dengue outbreak dynamics in Singapore Leveraging an Online Dashboard to Inform on Infectious Disease Surveillance: A case Study of COVID-19 in Kenya.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1