M. Shaban, Zahraa J. Mohammed, Hussein H. AbdulGhani, Soror Ali Mahdi, Hasan Majdi, N. M. A. Hadia, Laiba, A. Waleed
{"title":"Plasmonic Properties of Graphene Loaded Waveguide Bounded by Chiroferrite Medium","authors":"M. Shaban, Zahraa J. Mohammed, Hussein H. AbdulGhani, Soror Ali Mahdi, Hasan Majdi, N. M. A. Hadia, Laiba, A. Waleed","doi":"10.1007/s11468-024-02523-x","DOIUrl":null,"url":null,"abstract":"<p>Herein, plasmonic characteristics of graphene filled waveguide surrounded by chiroferrite medium are analyzed in the THz frequency spectrum. Graphene conductivity is modelled using the Kobo formula, and impedance boundary conditions are employed to compute dispersion relation. The influence of constitutive variables of chiroferrite medium on the propagation behavior of SPP mode is examined. The propagation behavior of SPPs mode is studied by changing the constitutive parameters of chiroferrite medium and graphene features. From numerical results, it is revealed that effective mode index (EMI, phase velocity, graphene conductivity, and EM wave frequency) can be tailored by adjusting chirality, gyrotropy, and graphene features (chemical potential, number of graphene layers) in the THz frequency range. This work may have potential applications in plasmonic community to design the innovative optical sensors, plasmonic platforms, detectors, and surface waveguides in the THz frequency region and provide active control due to additional degree of freedom in graphene and anisotropy of chiral medium.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"5 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02523-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, plasmonic characteristics of graphene filled waveguide surrounded by chiroferrite medium are analyzed in the THz frequency spectrum. Graphene conductivity is modelled using the Kobo formula, and impedance boundary conditions are employed to compute dispersion relation. The influence of constitutive variables of chiroferrite medium on the propagation behavior of SPP mode is examined. The propagation behavior of SPPs mode is studied by changing the constitutive parameters of chiroferrite medium and graphene features. From numerical results, it is revealed that effective mode index (EMI, phase velocity, graphene conductivity, and EM wave frequency) can be tailored by adjusting chirality, gyrotropy, and graphene features (chemical potential, number of graphene layers) in the THz frequency range. This work may have potential applications in plasmonic community to design the innovative optical sensors, plasmonic platforms, detectors, and surface waveguides in the THz frequency region and provide active control due to additional degree of freedom in graphene and anisotropy of chiral medium.
期刊介绍:
Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons.
Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.