A Theoretical Investigation on the Role of Surface Plasmon Excitation in the Cloaking and Protection of Gold Cylindrical Rods Using Metallic Layers of Different Materials

IF 3.3 4区 物理与天体物理 Q2 CHEMISTRY, PHYSICAL Plasmonics Pub Date : 2024-09-06 DOI:10.1007/s11468-024-02453-8
Sohila Hajihashemi, Bahram Jazi, Samaneh Najari
{"title":"A Theoretical Investigation on the Role of Surface Plasmon Excitation in the Cloaking and Protection of Gold Cylindrical Rods Using Metallic Layers of Different Materials","authors":"Sohila Hajihashemi, Bahram Jazi, Samaneh Najari","doi":"10.1007/s11468-024-02453-8","DOIUrl":null,"url":null,"abstract":"<p>This work investigates the excitation of plasmons in the common region between two coaxial cylindrical waveguides nested within each other, utilizing planar electromagnetic waves. The structure under consideration comprises a metallic antenna shielded with another metallic thin layer, both metals assumed to be cylindrical symmetrically without a gap and in a concentric configuration. The conductivity of the metals is evaluated using the Drude theory. An incident electromagnetic wave in B-mode with <span>\\(B_z\\ne 0\\)</span> is radiated onto the mentioned antenna. By employing wave scattering theory and solving the field equations in each region, including the vacuum, outer metallic thin layer, and inner metallic core, the surface charge density resulting from the presence of surface plasmons at the interface between the inner metallic core and the outer metallic layer, as well as between the metallic layer and the vacuum region, is calculated and analyzed. The variations in surface plasmon density at the first interface (the common boundary between the two metals) and the interface between the metal and vacuum are investigated concerning changes in the incident wave frequency and the radii of the antenna layers. It is demonstrated that the excitation of plasmons occurs most significantly in the frequency range where the conductivities of the inner metallic core and the metallic layer have opposite signs, leading to synchronization between surface plasmons.</p>","PeriodicalId":736,"journal":{"name":"Plasmonics","volume":"126 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11468-024-02453-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the excitation of plasmons in the common region between two coaxial cylindrical waveguides nested within each other, utilizing planar electromagnetic waves. The structure under consideration comprises a metallic antenna shielded with another metallic thin layer, both metals assumed to be cylindrical symmetrically without a gap and in a concentric configuration. The conductivity of the metals is evaluated using the Drude theory. An incident electromagnetic wave in B-mode with \(B_z\ne 0\) is radiated onto the mentioned antenna. By employing wave scattering theory and solving the field equations in each region, including the vacuum, outer metallic thin layer, and inner metallic core, the surface charge density resulting from the presence of surface plasmons at the interface between the inner metallic core and the outer metallic layer, as well as between the metallic layer and the vacuum region, is calculated and analyzed. The variations in surface plasmon density at the first interface (the common boundary between the two metals) and the interface between the metal and vacuum are investigated concerning changes in the incident wave frequency and the radii of the antenna layers. It is demonstrated that the excitation of plasmons occurs most significantly in the frequency range where the conductivities of the inner metallic core and the metallic layer have opposite signs, leading to synchronization between surface plasmons.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用不同材料的金属层对表面等离子体激发在金圆柱棒的隐蔽和保护中的作用进行理论研究
这项研究利用平面电磁波,探讨了在两个相互嵌套的同轴圆柱形波导之间的公共区域激发等离子体的问题。所考虑的结构包括一个用另一个金属薄层屏蔽的金属天线,假定这两种金属都是对称的圆柱形,没有间隙,并呈同心配置。使用德鲁德理论评估了金属的导电性。入射的 B 模式电磁波以 \(B_z\ne 0\) 的频率辐射到上述天线上。通过采用波散射理论并求解每个区域(包括真空、外金属薄层和内金属芯)的场方程,计算并分析了内金属芯与外金属层之间以及金属层与真空区域之间界面上存在的表面等离子体所产生的表面电荷密度。根据入射波频率和天线层半径的变化,研究了第一界面(两种金属之间的共同边界)和金属与真空界面上表面等离子体密度的变化。结果表明,在金属内核和金属层的电导率符号相反的频率范围内,等离子体的激发最为显著,从而导致表面等离子体之间的同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasmonics
Plasmonics 工程技术-材料科学:综合
CiteScore
5.90
自引率
6.70%
发文量
164
审稿时长
2.1 months
期刊介绍: Plasmonics is an international forum for the publication of peer-reviewed leading-edge original articles that both advance and report our knowledge base and practice of the interactions of free-metal electrons, Plasmons. Topics covered include notable advances in the theory, Physics, and applications of surface plasmons in metals, to the rapidly emerging areas of nanotechnology, biophotonics, sensing, biochemistry and medicine. Topics, including the theory, synthesis and optical properties of noble metal nanostructures, patterned surfaces or materials, continuous or grated surfaces, devices, or wires for their multifarious applications are particularly welcome. Typical applications might include but are not limited to, surface enhanced spectroscopic properties, such as Raman scattering or fluorescence, as well developments in techniques such as surface plasmon resonance and near-field scanning optical microscopy.
期刊最新文献
Comparative Analysis of Two Different MIM Configurations of a Plasmonic Nanoantenna On the Transmission Line Analogy for Modeling Plasmonic Nanowire Circuits Terahertz-Multiplexed Metallic Metasurfaces for Enhanced Trace Sample Absorption Plasmonic Characteristics of LiF Filled Slab Waveguide in Isotropic Plasma Environment Synthesis, Characterization, and Modeling of Reduced Graphene Oxide Supported Adsorbent for Sorption of Pb(II) and Cr(VI) Ions from Binary Mixture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1