Methodological Challenges using Routine Clinical Care Data for Real-World Evidence: a Rapid Review utilizing a systematic literature search and focus group discussion

Michelle Pfaffenlehner, Max Behrens, Daniela Zöller, Kathrin Ungethüm, Kai Günther, Viktoria Rücker, Jens-Peter Reese, Peter Heuschmann, Miriam Kesselmeier, Flavia Remo, André Scherag, Harald Binder, Nadine Binder, the EVA4MII project
{"title":"Methodological Challenges using Routine Clinical Care Data for Real-World Evidence: a Rapid Review utilizing a systematic literature search and focus group discussion","authors":"Michelle Pfaffenlehner, Max Behrens, Daniela Zöller, Kathrin Ungethüm, Kai Günther, Viktoria Rücker, Jens-Peter Reese, Peter Heuschmann, Miriam Kesselmeier, Flavia Remo, André Scherag, Harald Binder, Nadine Binder, the EVA4MII project","doi":"10.1101/2024.09.05.24313049","DOIUrl":null,"url":null,"abstract":"<strong>Background</strong> The integration of real-world evidence (RWE) from real-world data (RWD) in clinical research is crucial for bridging the gap between clinical trial results and real-world outcomes. Analyzing routinely collected data to generate clinical evidence faces methodological concerns like confounding and bias, similar to prospectively documented observational studies. This study focuses on additional limitations frequently reported in the literature, providing an overview of the challenges and biases inherent to analyzing routine clinical care data, including health claims data (hereafter: routine data).","PeriodicalId":501071,"journal":{"name":"medRxiv - Epidemiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.24313049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background The integration of real-world evidence (RWE) from real-world data (RWD) in clinical research is crucial for bridging the gap between clinical trial results and real-world outcomes. Analyzing routinely collected data to generate clinical evidence faces methodological concerns like confounding and bias, similar to prospectively documented observational studies. This study focuses on additional limitations frequently reported in the literature, providing an overview of the challenges and biases inherent to analyzing routine clinical care data, including health claims data (hereafter: routine data).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用常规临床护理数据获取真实世界证据的方法论挑战:利用系统文献检索和焦点小组讨论进行快速审查
背景 在临床研究中整合来自真实世界数据(RWD)的真实世界证据(RWE)对于弥合临床试验结果与真实世界结果之间的差距至关重要。与前瞻性观察研究类似,分析常规收集的数据以生成临床证据面临着混杂和偏倚等方法学问题。本研究关注文献中经常报道的其他限制因素,概述了分析常规临床护理数据(包括健康索赔数据,以下简称常规数据)所面临的挑战和固有的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Climate Change and Malaria: A Call for Robust Analytics Female Infertility and Neurodevelopmental Disorders in Children: associations and evidence for familial confounding in Denmark Surveillance and control of neglected zoonotic diseases: methodological approaches to studying Rift Valley Fever, Crimean-Congo Haemorrhagic Fever and Brucellosis at the human-livestock-wildlife interface across diverse agricultural systems in Uganda Climate variation and serotype competition drive dengue outbreak dynamics in Singapore Leveraging an Online Dashboard to Inform on Infectious Disease Surveillance: A case Study of COVID-19 in Kenya.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1