Direct causal variable discovery leveraging the invariance principle: application in biomedical studies

Liangying Yin, Menghui Liu, Yujia Shi, Jinghong Qiu, Hon-cheong So
{"title":"Direct causal variable discovery leveraging the invariance principle: application in biomedical studies","authors":"Liangying Yin, Menghui Liu, Yujia Shi, Jinghong Qiu, Hon-cheong So","doi":"10.1101/2024.08.29.24312763","DOIUrl":null,"url":null,"abstract":"Accurate identification of direct causal(parental) variables for a target is of primary interest in many applications, especially in biomedicine. It could promote our understanding of the underlying pathophysiological mechanism and facilitate the discovery of new biomarkers and therapeutic targets for studied clinical outcomes. However, many researchers are inclined to resort to association-based machine learning methods to identify outcome-associated variables. And many of the identified variables may prove to be irrelevant. On the other hand, there is a lack of an efficient method for reliable parental set identification, especially in high-dimensional settings (e.g., biomedicine).","PeriodicalId":501071,"journal":{"name":"medRxiv - Epidemiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.29.24312763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate identification of direct causal(parental) variables for a target is of primary interest in many applications, especially in biomedicine. It could promote our understanding of the underlying pathophysiological mechanism and facilitate the discovery of new biomarkers and therapeutic targets for studied clinical outcomes. However, many researchers are inclined to resort to association-based machine learning methods to identify outcome-associated variables. And many of the identified variables may prove to be irrelevant. On the other hand, there is a lack of an efficient method for reliable parental set identification, especially in high-dimensional settings (e.g., biomedicine).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用不变量原则直接发现因果变量:在生物医学研究中的应用
在许多应用领域,尤其是生物医学领域,准确识别目标的直接因果(亲缘)变量是人们最关心的问题。它可以促进我们对潜在病理生理机制的理解,并有助于发现新的生物标记物和治疗目标,以研究临床结果。然而,许多研究人员倾向于采用基于关联的机器学习方法来识别与结果相关的变量。而许多确定的变量可能被证明是不相关的。另一方面,缺乏可靠的亲本集识别的有效方法,尤其是在高维环境中(如生物医学)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Climate Change and Malaria: A Call for Robust Analytics Female Infertility and Neurodevelopmental Disorders in Children: associations and evidence for familial confounding in Denmark Surveillance and control of neglected zoonotic diseases: methodological approaches to studying Rift Valley Fever, Crimean-Congo Haemorrhagic Fever and Brucellosis at the human-livestock-wildlife interface across diverse agricultural systems in Uganda Climate variation and serotype competition drive dengue outbreak dynamics in Singapore Leveraging an Online Dashboard to Inform on Infectious Disease Surveillance: A case Study of COVID-19 in Kenya.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1