Mohamed I. A. Othman, Mohamed F. Ismail, Ebtesam E. M. Eraki
{"title":"Multi-phenomena Analysis of Elastic Poro-Thermo-Microstretch Media Immersed in an Inviscid Fluid Under Different Fields via Three-Phase-Lag Model","authors":"Mohamed I. A. Othman, Mohamed F. Ismail, Ebtesam E. M. Eraki","doi":"10.1007/s40997-024-00792-9","DOIUrl":null,"url":null,"abstract":"<p>This paper explores the effects of an electromagnetic field, variable thermal conductivity, and gravity on the behavior of elastic porous thermo-microstretch media immersed in an inviscid fluid. The study incorporates the Green-Naghdi theory mode III (G-N III) and the three-phase-delay model (3PHL), which considers the coexistence of thermal waves, porous microstretch waves, and phase delay effects. The analytical strategy for deriving ordinary differential equations is normal mode analysis, then using the eliminating method between six ordinary differential equations, and finally using the characteristic equation to obtain the precise formulas for the physical quantities covered with an infinite fluid of G-N III theory to those of the model 3PHL. Thermal conductivity, the magnetic field, and the gravity have been shown to have a significant impact on all physical quantities.</p>","PeriodicalId":49063,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","volume":"20 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-024-00792-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the effects of an electromagnetic field, variable thermal conductivity, and gravity on the behavior of elastic porous thermo-microstretch media immersed in an inviscid fluid. The study incorporates the Green-Naghdi theory mode III (G-N III) and the three-phase-delay model (3PHL), which considers the coexistence of thermal waves, porous microstretch waves, and phase delay effects. The analytical strategy for deriving ordinary differential equations is normal mode analysis, then using the eliminating method between six ordinary differential equations, and finally using the characteristic equation to obtain the precise formulas for the physical quantities covered with an infinite fluid of G-N III theory to those of the model 3PHL. Thermal conductivity, the magnetic field, and the gravity have been shown to have a significant impact on all physical quantities.
期刊介绍:
Transactions of Mechanical Engineering is to foster the growth of scientific research in all branches of mechanical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities. The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in mechanical engineering as well
as applications of established techniques to new domains in various mechanical engineering disciplines such as: Solid Mechanics, Kinematics, Dynamics Vibration and Control, Fluids Mechanics, Thermodynamics and Heat Transfer, Energy and Environment, Computational Mechanics, Bio Micro and Nano Mechanics and Design and Materials Engineering & Manufacturing.
The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.