Equivalent Circuit Model for Electrochemical Impedance Spectroscopy of Commercial 18650 Lithium-Ion Cell Under Over-Discharge and Overcharge Conditions

IF 2.7 3区 化学 Q2 CHEMISTRY, ANALYTICAL Electroanalysis Pub Date : 2024-09-09 DOI:10.1002/elan.202300232
Salim Erol
{"title":"Equivalent Circuit Model for Electrochemical Impedance Spectroscopy of Commercial 18650 Lithium-Ion Cell Under Over-Discharge and Overcharge Conditions","authors":"Salim Erol","doi":"10.1002/elan.202300232","DOIUrl":null,"url":null,"abstract":"<p>This study endeavors to assess the impedance responses exhibited by 18650 Graphite||LiCoO<sub>2</sub> (C<sub>6</sub>||LCO) cells under conditions of over-discharge and overcharge. The impedance measurements are conducted at a potential of 4.20 V, followed by subjecting the cells to over-discharge and overcharge scenarios. It is observed that the impedance magnitude experiences augmentation in both instances. Upon reaching a potential of 2.70 V, the electrochemical attributes of the cells revert to their normal state post over-discharge. However, the impedance characteristics persist even upon exceeding a potential of 4.70 V. These observations imply that overcharge induces enduring alterations in impedance behavior, while over-discharge is a reversible phenomenon. To delve deeper into the underlying mechanisms, an equivalent circuit process model is constructed. This model elucidates that over-discharge of Li-ion batteries is reversible, indicating the potential for restoration of original impedance behavior upon recharge. Conversely, overcharge precipitates permanent alterations in impedance behavior, engendering irreversible changes in battery characteristics. In summation, this study underscores the criticality of meticulously managing the charging and discharging processes of Li-ion batteries to avert irreversible impairment to impedance behavior, thereby safeguarding battery performance and longevity.</p>","PeriodicalId":162,"journal":{"name":"Electroanalysis","volume":"36 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elan.202300232","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroanalysis","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elan.202300232","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study endeavors to assess the impedance responses exhibited by 18650 Graphite||LiCoO2 (C6||LCO) cells under conditions of over-discharge and overcharge. The impedance measurements are conducted at a potential of 4.20 V, followed by subjecting the cells to over-discharge and overcharge scenarios. It is observed that the impedance magnitude experiences augmentation in both instances. Upon reaching a potential of 2.70 V, the electrochemical attributes of the cells revert to their normal state post over-discharge. However, the impedance characteristics persist even upon exceeding a potential of 4.70 V. These observations imply that overcharge induces enduring alterations in impedance behavior, while over-discharge is a reversible phenomenon. To delve deeper into the underlying mechanisms, an equivalent circuit process model is constructed. This model elucidates that over-discharge of Li-ion batteries is reversible, indicating the potential for restoration of original impedance behavior upon recharge. Conversely, overcharge precipitates permanent alterations in impedance behavior, engendering irreversible changes in battery characteristics. In summation, this study underscores the criticality of meticulously managing the charging and discharging processes of Li-ion batteries to avert irreversible impairment to impedance behavior, thereby safeguarding battery performance and longevity.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过放电和过充电条件下商用 18650 锂离子电池电化学阻抗谱分析的等效电路模型
本研究旨在评估 18650 石墨||钴酸锂 <sub>2</sub> (C <sub>6</sub>||LCO) 电池在过放电和过充电条件下的阻抗响应。阻抗测量在 4.20 V 的电位下进行,然后对电池进行过放电和过充电。结果发现,在这两种情况下,阻抗幅度都会增大。当电位达到 2.70 V 时,电池的电化学特性恢复到过放电后的正常状态。然而,即使电位超过 4.70 V,阻抗特性依然存在。这些观察结果表明,过度充电会引起阻抗行为的持久改变、
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electroanalysis
Electroanalysis 化学-电化学
CiteScore
6.00
自引率
3.30%
发文量
222
审稿时长
2.4 months
期刊介绍: Electroanalysis is an international, peer-reviewed journal covering all branches of electroanalytical chemistry, including both fundamental and application papers as well as reviews dealing with new electrochemical sensors and biosensors, nanobioelectronics devices, analytical voltammetry, potentiometry, new electrochemical detection schemes based on novel nanomaterials, fuel cells and biofuel cells, and important practical applications. Serving as a vital communication link between the research labs and the field, Electroanalysis helps you to quickly adapt the latest innovations into practical clinical, environmental, food analysis, industrial and energy-related applications. Electroanalysis provides the most comprehensive coverage of the field and is the number one source for information on electroanalytical chemistry, electrochemical sensors and biosensors and fuel/biofuel cells.
期刊最新文献
Cover Picture: (Electroanalysis 11/2024) RETRACTION: Copper Oxide Nanoparticles with Graphitic Carbon Nitride for Ultrasensitive Photoelectrochemical Aptasensor of Bisphenol A Cover Picture: (Electroanalysis 10/2024) Perspectives on Photocatalytic Paper‐based Batteries Fueled by Alcohol Cover Picture: (Electroanalysis 9/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1