V-RoAst: A New Dataset for Visual Road Assessment

Natchapon Jongwiriyanurak, Zichao Zeng, June Moh Goo, Xinglei Wang, Ilya Ilyankou, Kerkritt Srirrongvikrai, Meihui Wang, James Haworth
{"title":"V-RoAst: A New Dataset for Visual Road Assessment","authors":"Natchapon Jongwiriyanurak, Zichao Zeng, June Moh Goo, Xinglei Wang, Ilya Ilyankou, Kerkritt Srirrongvikrai, Meihui Wang, James Haworth","doi":"arxiv-2408.10872","DOIUrl":null,"url":null,"abstract":"Road traffic crashes cause millions of deaths annually and have a significant\neconomic impact, particularly in low- and middle-income countries (LMICs). This\npaper presents an approach using Vision Language Models (VLMs) for road safety\nassessment, overcoming the limitations of traditional Convolutional Neural\nNetworks (CNNs). We introduce a new task ,V-RoAst (Visual question answering\nfor Road Assessment), with a real-world dataset. Our approach optimizes prompt\nengineering and evaluates advanced VLMs, including Gemini-1.5-flash and\nGPT-4o-mini. The models effectively examine attributes for road assessment.\nUsing crowdsourced imagery from Mapillary, our scalable solution influentially\nestimates road safety levels. In addition, this approach is designed for local\nstakeholders who lack resources, as it does not require training data. It\noffers a cost-effective and automated methods for global road safety\nassessments, potentially saving lives and reducing economic burdens.","PeriodicalId":501168,"journal":{"name":"arXiv - CS - Emerging Technologies","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Road traffic crashes cause millions of deaths annually and have a significant economic impact, particularly in low- and middle-income countries (LMICs). This paper presents an approach using Vision Language Models (VLMs) for road safety assessment, overcoming the limitations of traditional Convolutional Neural Networks (CNNs). We introduce a new task ,V-RoAst (Visual question answering for Road Assessment), with a real-world dataset. Our approach optimizes prompt engineering and evaluates advanced VLMs, including Gemini-1.5-flash and GPT-4o-mini. The models effectively examine attributes for road assessment. Using crowdsourced imagery from Mapillary, our scalable solution influentially estimates road safety levels. In addition, this approach is designed for local stakeholders who lack resources, as it does not require training data. It offers a cost-effective and automated methods for global road safety assessments, potentially saving lives and reducing economic burdens.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
V-RoAst:用于道路视觉评估的新数据集
道路交通事故每年造成数百万人死亡,并对经济产生重大影响,尤其是在中低收入国家(LMIC)。本文提出了一种利用视觉语言模型(VLM)进行道路安全评估的方法,克服了传统卷积神经网络(CNN)的局限性。我们利用真实世界的数据集引入了一项新任务 V-RoAst(道路评估视觉问题解答)。我们的方法优化了提示工程,并评估了先进的 VLM,包括 Gemini-1.5-flash 和 GPT-4o-mini。利用 Mapillary 的众包图像,我们的可扩展解决方案可对道路安全等级进行有影响力的评估。此外,由于不需要训练数据,这种方法专为缺乏资源的当地利益相关者设计。它为全球道路安全评估提供了一种具有成本效益的自动化方法,有可能挽救生命并减轻经济负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pennsieve - A Collaborative Platform for Translational Neuroscience and Beyond Analysing Attacks on Blockchain Systems in a Layer-based Approach Exploring Utility in a Real-World Warehouse Optimization Problem: Formulation Based on Quantun Annealers and Preliminary Results High Definition Map Mapping and Update: A General Overview and Future Directions Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1