Targeted syndromic next-generation sequencing panel for simultaneous detection of pathogens associated with bovine reproductive failure

Dhinesh Periyasamy, Yanyun Huang, Janet E Hill
{"title":"Targeted syndromic next-generation sequencing panel for simultaneous detection of pathogens associated with bovine reproductive failure","authors":"Dhinesh Periyasamy, Yanyun Huang, Janet E Hill","doi":"10.1101/2024.09.10.612295","DOIUrl":null,"url":null,"abstract":"Bovine reproductive failure, which includes infertility, abortion, and stillbirth in cattle, leads to significant economic losses for beef and milk producers. Diagnosing the infectious causes of bovine reproductive failure is challenging as there are multiple pathogens associated with it. The traditional stepwise approach to diagnostic testing is time-consuming and can cause significant delays. In this study, we have developed a syndromic next-generation sequencing panel (BovReproSeq), for the simultaneous detection of 17 pathogens associated with bovine reproductive failure. This targeted approach involves amplifying multiple pathogen-specific targets using ultra-multiplex PCR, followed by sequencing with the Oxford Nanopore platform and subsequent analysis of the data using a custom bioinformatic pipeline to determine the presence or absence of pathogens. We tested 116 clinical samples and found that BovReproSeq results matched with current diagnostic methods for 93% of the samples, and most of the disagreements occurring in samples with very low pathogen loads (Ct > 35). At the optimal read-count threshold of 10 reads (minimum number of reads to classify the sample as positive), the sensitivity of the assay was approximately 82%, while specificity was 100%. The overall accuracy of the assay was 98.8%. Matthew's Correlation Coefficient was approximately 0.90 and F1 score (harmonic mean of Precision and Recall) was 0.90, indicating excellent overall performance. Our study presents a significant advancement in detecting the infectious agents associated with bovine reproductive failure and the BovReproSeq panel's ability to detect 17 pathogens makes it a promising tool for veterinary diagnostics.","PeriodicalId":501357,"journal":{"name":"bioRxiv - Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bovine reproductive failure, which includes infertility, abortion, and stillbirth in cattle, leads to significant economic losses for beef and milk producers. Diagnosing the infectious causes of bovine reproductive failure is challenging as there are multiple pathogens associated with it. The traditional stepwise approach to diagnostic testing is time-consuming and can cause significant delays. In this study, we have developed a syndromic next-generation sequencing panel (BovReproSeq), for the simultaneous detection of 17 pathogens associated with bovine reproductive failure. This targeted approach involves amplifying multiple pathogen-specific targets using ultra-multiplex PCR, followed by sequencing with the Oxford Nanopore platform and subsequent analysis of the data using a custom bioinformatic pipeline to determine the presence or absence of pathogens. We tested 116 clinical samples and found that BovReproSeq results matched with current diagnostic methods for 93% of the samples, and most of the disagreements occurring in samples with very low pathogen loads (Ct > 35). At the optimal read-count threshold of 10 reads (minimum number of reads to classify the sample as positive), the sensitivity of the assay was approximately 82%, while specificity was 100%. The overall accuracy of the assay was 98.8%. Matthew's Correlation Coefficient was approximately 0.90 and F1 score (harmonic mean of Precision and Recall) was 0.90, indicating excellent overall performance. Our study presents a significant advancement in detecting the infectious agents associated with bovine reproductive failure and the BovReproSeq panel's ability to detect 17 pathogens makes it a promising tool for veterinary diagnostics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于同时检测与牛繁殖衰竭相关的病原体的靶向综合征下一代测序面板
牛繁殖衰竭包括牛不育、流产和死胎,给牛肉和牛奶生产商造成重大经济损失。由于与牛繁殖衰竭相关的病原体有多种,因此诊断牛繁殖衰竭的传染病因极具挑战性。传统的循序渐进诊断检测方法耗时较长,可能导致严重的延误。在这项研究中,我们开发了一种综合征下一代测序面板(BovReproSeq),可同时检测与牛繁殖衰竭相关的 17 种病原体。这种有针对性的方法包括使用超多重 PCR 扩增多个病原体特异性靶标,然后使用牛津纳米孔平台进行测序,随后使用定制的生物信息学管道分析数据,以确定是否存在病原体。我们对 116 份临床样本进行了测试,发现 93% 的样本的 BovReproSeq 结果与当前的诊断方法相匹配,大部分不一致发生在病原体载量极低(Ct > 35)的样本中。最佳读数阈值为 10 个读数(将样本归类为阳性的最小读数),检测灵敏度约为 82%,特异性为 100%。化验的总体准确率为 98.8%。马修相关系数(Matthew's Correlation Coefficient)约为 0.90,F1 分数(精确度和召回率的调和平均值)为 0.90,表明总体性能优异。我们的研究在检测与牛繁殖衰竭相关的传染病病原体方面取得了重大进展,BovReproSeq 面板检测 17 种病原体的能力使其成为兽医诊断领域前景广阔的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A system for functional studies of the major virulence factor of malaria parasites Light-harvesting by antenna-containing rhodopsins in pelagic Asgard archaea The Human Cytomegalovirus vGPCR UL33 is Essential for Efficient Lytic Replication in Epithelial Cells A chronic murine model of pulmonary Acinetobacter baumannii infection enabling the investigation of late virulence factors, long-term antibiotic treatments, and polymicrobial infections DNA replication dynamics are associated with genome composition in Plasmodium species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1