{"title":"Strategic targeting of Cas9 nickase expands tandem gene arrays","authors":"Hiroaki Takesue, Satoshi Okada, Goro Doi, Yuki Sugiyama, Emiko Kusumoto, Takashi Ito","doi":"10.1101/2024.09.10.612242","DOIUrl":null,"url":null,"abstract":"Expanding tandem gene arrays facilitates adaptation through dosage effects and gene family formation via sequence diversification. However, experimental induction of such expansions remains challenging. Here we introduce a method termed break-induced replication (BIR)-mediated tandem repeat expansion (BITREx) to address this challenge. BITREx strategically places Cas9 nickase adjacent to a tandem gene array to break the replication fork that has replicated the array, forming a single-end double-strand break. This break is subsequently end-resected to become single-stranded. Since there is no repeat unit downstream of the break, the single-stranded DNA often invades an upstream unit to initiate ectopic BIR, resulting in array expansion. BITREx has successfully expanded gene arrays in budding yeast, with the CUP1 array reaching ~1 Mb. Furthermore, appropriate splint DNA allows BITREx to generate tandem arrays de novo from single-copy genes. We have also demonstrated BITREx in mammalian cells. Therefore, BITREx will find various unique applications in genome engineering.","PeriodicalId":501161,"journal":{"name":"bioRxiv - Genomics","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Expanding tandem gene arrays facilitates adaptation through dosage effects and gene family formation via sequence diversification. However, experimental induction of such expansions remains challenging. Here we introduce a method termed break-induced replication (BIR)-mediated tandem repeat expansion (BITREx) to address this challenge. BITREx strategically places Cas9 nickase adjacent to a tandem gene array to break the replication fork that has replicated the array, forming a single-end double-strand break. This break is subsequently end-resected to become single-stranded. Since there is no repeat unit downstream of the break, the single-stranded DNA often invades an upstream unit to initiate ectopic BIR, resulting in array expansion. BITREx has successfully expanded gene arrays in budding yeast, with the CUP1 array reaching ~1 Mb. Furthermore, appropriate splint DNA allows BITREx to generate tandem arrays de novo from single-copy genes. We have also demonstrated BITREx in mammalian cells. Therefore, BITREx will find various unique applications in genome engineering.