Experimental Study and Kinetic Modeling of Aniline Polymerization

IF 1.4 4区 化学 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Russian Journal of Physical Chemistry B Pub Date : 2024-09-11 DOI:10.1134/S1990793124700490
V. Dharmawat, J. Gyal, P. Sutar
{"title":"Experimental Study and Kinetic Modeling of Aniline Polymerization","authors":"V. Dharmawat,&nbsp;J. Gyal,&nbsp;P. Sutar","doi":"10.1134/S1990793124700490","DOIUrl":null,"url":null,"abstract":"<p>Polyaniline is a conducting polymer with a wide variety of applications. In the recent years, exploring the different avenues for the synthesis of polyaniline has gained immense popularity among the researchers. This study focuses on the experimental investigation and subsequent data modeling to determine the kinetics of chemical (oxidative) polymerization of aniline with ammonium persulfate as an oxidant in aqueous hydrochloric acid solutions at 277 K. The concentration of the polyaniline formed was determined using colorimetry. The effect of different initial concentrations of oxidant/monomer from 0.010–0.025 M on the rate of polymerization was observed. The polymerization kinetics at various initial oxidant to monomer mole ratios from 1–2.5 was also investigated. Using a well-established kinetic rate expression, the reaction rate constants were determined that best fitted the experimental data. Further, the polyaniline concentrations were predicted using the kinetic parameters with an absolute average relative deviation ranging from 4 to 17%.</p>","PeriodicalId":768,"journal":{"name":"Russian Journal of Physical Chemistry B","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Physical Chemistry B","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1990793124700490","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyaniline is a conducting polymer with a wide variety of applications. In the recent years, exploring the different avenues for the synthesis of polyaniline has gained immense popularity among the researchers. This study focuses on the experimental investigation and subsequent data modeling to determine the kinetics of chemical (oxidative) polymerization of aniline with ammonium persulfate as an oxidant in aqueous hydrochloric acid solutions at 277 K. The concentration of the polyaniline formed was determined using colorimetry. The effect of different initial concentrations of oxidant/monomer from 0.010–0.025 M on the rate of polymerization was observed. The polymerization kinetics at various initial oxidant to monomer mole ratios from 1–2.5 was also investigated. Using a well-established kinetic rate expression, the reaction rate constants were determined that best fitted the experimental data. Further, the polyaniline concentrations were predicted using the kinetic parameters with an absolute average relative deviation ranging from 4 to 17%.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
苯胺聚合的实验研究和动力学建模
摘要 聚苯胺是一种用途广泛的导电聚合物。近年来,探索合成聚苯胺的不同途径受到了研究人员的广泛欢迎。本研究主要通过实验研究和随后的数据建模来确定在 277 K 的盐酸水溶液中以过硫酸铵为氧化剂进行苯胺化学(氧化)聚合的动力学。观察了 0.010-0.025 M 的不同氧化剂/单体初始浓度对聚合速率的影响。此外,还研究了不同初始氧化剂与单体摩尔比(1-2.5)下的聚合动力学。利用成熟的动力学速率表达式,确定了最符合实验数据的反应速率常数。此外,还利用动力学参数预测了聚苯胺的浓度,其绝对平均相对偏差在 4% 到 17% 之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Russian Journal of Physical Chemistry B
Russian Journal of Physical Chemistry B 化学-物理:原子、分子和化学物理
CiteScore
2.20
自引率
71.40%
发文量
106
审稿时长
4-8 weeks
期刊介绍: Russian Journal of Physical Chemistry B: Focus on Physics is a journal that publishes studies in the following areas: elementary physical and chemical processes; structure of chemical compounds, reactivity, effect of external field and environment on chemical transformations; molecular dynamics and molecular organization; dynamics and kinetics of photoand radiation-induced processes; mechanism of chemical reactions in gas and condensed phases and at interfaces; chain and thermal processes of ignition, combustion and detonation in gases, two-phase and condensed systems; shock waves; new physical methods of examining chemical reactions; and biological processes in chemical physics.
期刊最新文献
A Mini Review on Synthesis and Characterization of Copper Oxide Some Properties and Potential Applications Kinetics of Thermal Decomposition of Polymethylmethacrylate in an Oxidizing Environment Kinetics of Decomposition of 1,1-Diamino-2,2-dinitroethylene (FOX-7). 6. The Induction Period in the Early Stages of a Reaction in the Solid State Kinetics of Thermal Decomposition of Polymethylmethacrylate in a Carbon Dioxide Environment About the Electrical Model of Detonation Kinetics of Explosives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1