Azhaar T. Alsaggaf, Mostafa Sayed, Ahmed I.A. Soliman, Mostafa Ahmed
{"title":"Proline-based Organocatalyst for the Synthesis of Arylidene Benzofuranone Intermediates Enabling the Construction of Aurone-derived Azadienes","authors":"Azhaar T. Alsaggaf, Mostafa Sayed, Ahmed I.A. Soliman, Mostafa Ahmed","doi":"10.2174/0113852728316945240807114705","DOIUrl":null,"url":null,"abstract":"Organocatalysis has been recognized as a part of chemical research for a long time, and it gained significant attention in catalysis in recent decades. Amine catalyst is a substantial type of organocatalysis, and it is successively employed for the activation of carbonyl compounds. This manuscript delves into the exploration of a proline-based organocatalyst for the synthesis of arylidene benzofuranone intermediates, a critical step that facilitates the subsequent construction of aurone-derived azadienes. In this work, we successfully reported the synthesis of arylidene benzofuranone intermediates through Aldol condensation of benzofuranone with different aldehydes enabled by proline-derived organic catalysts. To achieve this strategy, six examples of amine organocatalysts (A1-A6) were evaluated to showcase the optimal catalyst for this transformation. Moreover, the arylidene benzofuranone intermediates were further employed for the synthesis of interesting aurone-derived azadiene substrates through its reaction with TsNH2. Notably, the using of organocatalyst A6 resulted in the delivery of the product with the best yield (94% isolated yield). Under the optimized conditions, different aromatic and heterocyclic containing aldehydes were effectively tolerated to generate the corresponding arylidene benzofuranone intermediates, which further converted to the azadiene products in high to excellent yield. The claimed structures were confirmed by the spectral analysis.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":"7 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728316945240807114705","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Organocatalysis has been recognized as a part of chemical research for a long time, and it gained significant attention in catalysis in recent decades. Amine catalyst is a substantial type of organocatalysis, and it is successively employed for the activation of carbonyl compounds. This manuscript delves into the exploration of a proline-based organocatalyst for the synthesis of arylidene benzofuranone intermediates, a critical step that facilitates the subsequent construction of aurone-derived azadienes. In this work, we successfully reported the synthesis of arylidene benzofuranone intermediates through Aldol condensation of benzofuranone with different aldehydes enabled by proline-derived organic catalysts. To achieve this strategy, six examples of amine organocatalysts (A1-A6) were evaluated to showcase the optimal catalyst for this transformation. Moreover, the arylidene benzofuranone intermediates were further employed for the synthesis of interesting aurone-derived azadiene substrates through its reaction with TsNH2. Notably, the using of organocatalyst A6 resulted in the delivery of the product with the best yield (94% isolated yield). Under the optimized conditions, different aromatic and heterocyclic containing aldehydes were effectively tolerated to generate the corresponding arylidene benzofuranone intermediates, which further converted to the azadiene products in high to excellent yield. The claimed structures were confirmed by the spectral analysis.
期刊介绍:
Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.