About the Origin of Carbonado

IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Minerals Pub Date : 2024-09-11 DOI:10.3390/min14090927
Valentin Afanasiev, Vladimir Kovalevsky, Alexander Yelisseyev, Rudolf Mashkovtsev, Sergey Gromilov, Sargylana Ugapeva, Ekaterina Barabash, Oksana Ivanova, Anton Pavlushin
{"title":"About the Origin of Carbonado","authors":"Valentin Afanasiev, Vladimir Kovalevsky, Alexander Yelisseyev, Rudolf Mashkovtsev, Sergey Gromilov, Sargylana Ugapeva, Ekaterina Barabash, Oksana Ivanova, Anton Pavlushin","doi":"10.3390/min14090927","DOIUrl":null,"url":null,"abstract":"Carbonado is a specific variety of diamonds, typical representatives of which are distributed in the diamond placers of Central Africa, Brazil, and Venezuela. Carbonado consists of the microcrystalline aggregates of diamonds, with inclusions of mineral matter. These aggregates appear as fragments that are rounded to varying degrees. Carbonado has been known for a long time, but its primary sources have not been found and its genesis remains unclear. We have substantiated the hypothesis that the most probable precursor of carbonado is shungite. Shungite is a specific form of non-crystalline, non-graphitic, fullerene-like carbon. Shungite rocks, currently known in Karelia (Russia), are natural microdispersed composite materials containing shungite—carbonaceous matter and mineral components of different compositions. The content of carbonaceous matter in shungite rocks is from less than 10% to 98%. The carbon isotopic composition of shungite is light ẟ13C from −25‰ to −40‰. The age of shungite rock is more than 2 billion years old, but earlier shungite was probably much more widespread. Known shungite rocks are more than 2 billion years old, but earlier shungite was probably much more widespread. Shungite rocks could recrystallize into diamond rock upon subduction to high pressure and temperature. The diamond rocks could then be exhumed to the Earth’s surface, where they could undergo disruption and reworking with formation of those very fragments that are known as “carbonado”.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":"17 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090927","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Carbonado is a specific variety of diamonds, typical representatives of which are distributed in the diamond placers of Central Africa, Brazil, and Venezuela. Carbonado consists of the microcrystalline aggregates of diamonds, with inclusions of mineral matter. These aggregates appear as fragments that are rounded to varying degrees. Carbonado has been known for a long time, but its primary sources have not been found and its genesis remains unclear. We have substantiated the hypothesis that the most probable precursor of carbonado is shungite. Shungite is a specific form of non-crystalline, non-graphitic, fullerene-like carbon. Shungite rocks, currently known in Karelia (Russia), are natural microdispersed composite materials containing shungite—carbonaceous matter and mineral components of different compositions. The content of carbonaceous matter in shungite rocks is from less than 10% to 98%. The carbon isotopic composition of shungite is light ẟ13C from −25‰ to −40‰. The age of shungite rock is more than 2 billion years old, but earlier shungite was probably much more widespread. Known shungite rocks are more than 2 billion years old, but earlier shungite was probably much more widespread. Shungite rocks could recrystallize into diamond rock upon subduction to high pressure and temperature. The diamond rocks could then be exhumed to the Earth’s surface, where they could undergo disruption and reworking with formation of those very fragments that are known as “carbonado”.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于 Carbonado 的起源
Carbonado 是钻石的一个特殊品种,其典型代表分布在中非、巴西和委内瑞拉的钻石矿床中。Carbonado 由钻石的微晶集合体和矿物包裹体组成。这些聚集体呈不同程度的圆形碎片。人们对碳纳多的了解由来已久,但尚未发现其主要来源,其成因也仍不清楚。我们已经证实了一个假设,即碳化岩最有可能的前身是霰石。霰石是一种特殊形式的非晶体、非石墨、富勒烯状碳。目前已知的俄罗斯卡累利阿(Karelia)霰石岩是天然的微分散复合材料,含有霰石碳质和不同成分的矿物成分。碳质物质在霰岩石中的含量从不到 10%到 98%不等。闪长岩的碳同位素组成为-25‰至-40‰的轻ẟ13C。蘑菇云岩的年龄超过 20 亿年,但更早的蘑菇云岩可能更为普遍。已知的霰岩石的年龄超过 20 亿年,但更早的霰石可能分布得更广。在俯冲到高压和高温时,霰石岩可能重新结晶成金刚石岩。然后,这些金刚石岩石可能会被挖掘到地球表面,在那里,它们可能会经历破坏和再加工,形成那些被称为 "carbonado "的碎片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerals
Minerals MINERALOGY-MINING & MINERAL PROCESSING
CiteScore
4.10
自引率
20.00%
发文量
1351
审稿时长
19.04 days
期刊介绍: Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Characterization of Humic Acid Salts and Their Use for CO2 Reduction Microseismic Monitoring and Disaster Warning via Mining and Filling Processes of Residual Hazardous Ore Bodies Paleoenvironmental Transition during the Rhuddanian–Aeronian and Its Implications for Lithofacies Evolution and Shale Gas Exploration: Insights from the Changning Area, Southern Sichuan Basin, South-West China Application of Machine Learning to Characterize Metallogenic Potential Based on Trace Elements of Zircon: A Case Study of the Tethyan Domain Hydrothermal Karstification of the Pre-Messinian Eonile Canyon: Geomorphological and Geochemical Evidences for Hypogene Speleogenesis in the Middle Nile Valley of Egypt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1