Numerical Simulation and Experimental Study of a Deep-Sea Polymetallic Nodule Collector Based on the Coanda Effect

IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Minerals Pub Date : 2024-09-06 DOI:10.3390/min14090915
Yan Li, Zhibin Han, Ziyuan Li
{"title":"Numerical Simulation and Experimental Study of a Deep-Sea Polymetallic Nodule Collector Based on the Coanda Effect","authors":"Yan Li, Zhibin Han, Ziyuan Li","doi":"10.3390/min14090915","DOIUrl":null,"url":null,"abstract":"Ore collection devices are important for the collection of deep-sea polymetallic nodules. Based on the CFD-DEM solid–liquid two-phase flow coupling calculation method, this paper simulated the rise and transport phases of polymetallic nodules using the Coanda effect ore collection device. The validity of the numerical simulation method was confirmed through experimental testing. On this basis, the effects of different working and structural parameters on the collection rate were studied. The results indicate that the flow rate of the collection jet and the bottom clearance were the primary factors affecting the collection rate of the polymetallic nodules. An increase in the collection jet flow rate leads to a substantial rise in the collection rate of polymetallic nodules. Conversely, an increase in bottom clearance results in a decrease in the collection rate. A collection rate exceeding 90% can be achieved in both scenarios: a 10 mm bottom clearance with an 8 m/s collection jet flow rate, and a 30 mm bottom clearance with a 10 m/s collection jet flow rate. The collection nozzle slant angle has no substantial impact on the collection rate, and the recommended collection nozzle slant angle is 35° to reduce energy loss.","PeriodicalId":18601,"journal":{"name":"Minerals","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/min14090915","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ore collection devices are important for the collection of deep-sea polymetallic nodules. Based on the CFD-DEM solid–liquid two-phase flow coupling calculation method, this paper simulated the rise and transport phases of polymetallic nodules using the Coanda effect ore collection device. The validity of the numerical simulation method was confirmed through experimental testing. On this basis, the effects of different working and structural parameters on the collection rate were studied. The results indicate that the flow rate of the collection jet and the bottom clearance were the primary factors affecting the collection rate of the polymetallic nodules. An increase in the collection jet flow rate leads to a substantial rise in the collection rate of polymetallic nodules. Conversely, an increase in bottom clearance results in a decrease in the collection rate. A collection rate exceeding 90% can be achieved in both scenarios: a 10 mm bottom clearance with an 8 m/s collection jet flow rate, and a 30 mm bottom clearance with a 10 m/s collection jet flow rate. The collection nozzle slant angle has no substantial impact on the collection rate, and the recommended collection nozzle slant angle is 35° to reduce energy loss.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于科恩达效应的深海多金属结核收集器的数值模拟和实验研究
矿石采集装置对于采集深海多金属结核非常重要。本文基于 CFD-DEM 固液两相流耦合计算方法,利用科恩达效应矿石采集装置模拟了多金属结核的上升和运移阶段。通过实验测试证实了数值模拟方法的有效性。在此基础上,研究了不同工作参数和结构参数对采集率的影响。结果表明,采集射流的流速和底部间隙是影响多金属结核采集率的主要因素。收集射流流速的增加会导致多金属结核收集率的大幅上升。相反,底部间隙的增加会导致收集率下降。在以下两种情况下,采集率均可超过 90%:底部间隙为 10 毫米,采集射流流速为 8 米/秒;底部间隙为 30 毫米,采集射流流速为 10 米/秒。收集喷嘴斜角对收集率没有实质性影响,建议收集喷嘴斜角为 35°,以减少能量损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerals
Minerals MINERALOGY-MINING & MINERAL PROCESSING
CiteScore
4.10
自引率
20.00%
发文量
1351
审稿时长
19.04 days
期刊介绍: Minerals (ISSN 2075-163X) is an international open access journal that covers the broad field of mineralogy, economic mineral resources, mineral exploration, innovative mining techniques and advances in mineral processing. It publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Characterization of Humic Acid Salts and Their Use for CO2 Reduction Microseismic Monitoring and Disaster Warning via Mining and Filling Processes of Residual Hazardous Ore Bodies Paleoenvironmental Transition during the Rhuddanian–Aeronian and Its Implications for Lithofacies Evolution and Shale Gas Exploration: Insights from the Changning Area, Southern Sichuan Basin, South-West China Application of Machine Learning to Characterize Metallogenic Potential Based on Trace Elements of Zircon: A Case Study of the Tethyan Domain Hydrothermal Karstification of the Pre-Messinian Eonile Canyon: Geomorphological and Geochemical Evidences for Hypogene Speleogenesis in the Middle Nile Valley of Egypt
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1