Hamiltonian Lorenz-like models

Francesco Fedele, Cristel Chandre, Martin Horvat, Nedjeljka Žagar
{"title":"Hamiltonian Lorenz-like models","authors":"Francesco Fedele, Cristel Chandre, Martin Horvat, Nedjeljka Žagar","doi":"arxiv-2409.07920","DOIUrl":null,"url":null,"abstract":"The reduced-complexity models developed by Edward Lorenz are widely used in\natmospheric and climate sciences to study nonlinear aspect of dynamics and to\ndemonstrate new methods for numerical weather prediction. A set of inviscid\nLorenz models describing the dynamics of a single variable in a\nzonally-periodic domain, without dissipation and forcing, conserve energy but\nare not Hamiltonian. In this paper, we start from a general continuous parent\nfluid model, from which we derive a family of Hamiltonian Lorenz-like models\nthrough a symplectic discretization of the associated Poisson bracket that\npreserves the Jacobi identity. A symplectic-split integrator is also\nformulated. These Hamiltonian models conserve energy and maintain the\nnearest-neighbor couplings inherent in the original Lorenz model. As a\ncorollary, we find that the Lorenz-96 model can be seen as a result of a poor\ndiscretization of a Poisson bracket. Hamiltonian Lorenz-like models offer\npromising alternatives to the original Lorenz models, especially for the\nqualitative representation of non-Gaussian weather extremes and wave\ninteractions, which are key factors in understanding many phenomena of the\nclimate system.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The reduced-complexity models developed by Edward Lorenz are widely used in atmospheric and climate sciences to study nonlinear aspect of dynamics and to demonstrate new methods for numerical weather prediction. A set of inviscid Lorenz models describing the dynamics of a single variable in a zonally-periodic domain, without dissipation and forcing, conserve energy but are not Hamiltonian. In this paper, we start from a general continuous parent fluid model, from which we derive a family of Hamiltonian Lorenz-like models through a symplectic discretization of the associated Poisson bracket that preserves the Jacobi identity. A symplectic-split integrator is also formulated. These Hamiltonian models conserve energy and maintain the nearest-neighbor couplings inherent in the original Lorenz model. As a corollary, we find that the Lorenz-96 model can be seen as a result of a poor discretization of a Poisson bracket. Hamiltonian Lorenz-like models offer promising alternatives to the original Lorenz models, especially for the qualitative representation of non-Gaussian weather extremes and wave interactions, which are key factors in understanding many phenomena of the climate system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
类似洛伦兹的汉密尔顿模型
爱德华-洛伦兹(Edward Lorenz)建立的简化模型被广泛应用于大气科学和气候科学,以研究动力学的非线性方面,并演示数值天气预报的新方法。一组不粘性洛伦兹模型描述了单变量在无耗散和强迫的节周期域中的动力学,它们保存能量,但不是哈密顿模型。在本文中,我们从一般连续母流体模型出发,通过对相关泊松括号的交映离散化,推导出一系列类似哈密顿的洛伦兹模型,该模型保留了雅可比特性。此外,我们还制定了一个交映分裂积分器。这些哈密顿模型保存了能量,并保持了原始洛伦兹模型固有的近邻耦合。作为佐证,我们发现洛伦兹-96 模型可以看作是泊松括号的泊松离散化的结果。类似哈密顿洛伦兹的模型为原始洛伦兹模型提供了有前途的替代方案,特别是在定量表示非高斯极端天气和波浪相互作用方面,这些是理解气候系统许多现象的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1