Combined Optimization of Dynamics and Assimilation with End-to-End Learning on Sparse Observations

Vadim Zinchenko, David S. Greenberg
{"title":"Combined Optimization of Dynamics and Assimilation with End-to-End Learning on Sparse Observations","authors":"Vadim Zinchenko, David S. Greenberg","doi":"arxiv-2409.07137","DOIUrl":null,"url":null,"abstract":"Fitting nonlinear dynamical models to sparse and noisy observations is\nfundamentally challenging. Identifying dynamics requires data assimilation (DA)\nto estimate system states, but DA requires an accurate dynamical model. To\nbreak this deadlock we present CODA, an end-to-end optimization scheme for\njointly learning dynamics and DA directly from sparse and noisy observations. A\nneural network is trained to carry out data accurate, efficient and\nparallel-in-time DA, while free parameters of the dynamical system are\nsimultaneously optimized. We carry out end-to-end learning directly on\nobservation data, introducing a novel learning objective that combines unrolled\nauto-regressive dynamics with the data- and self-consistency terms of\nweak-constraint 4Dvar DA. By taking into account interactions between new and\nexisting simulation components over multiple time steps, CODA can recover\ninitial conditions, fit unknown dynamical parameters and learn neural\nnetwork-based PDE terms to match both available observations and\nself-consistency constraints. In addition to facilitating end-to-end learning\nof dynamics and providing fast, amortized, non-sequential DA, CODA provides\ngreater robustness to model misspecification than classical DA approaches.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fitting nonlinear dynamical models to sparse and noisy observations is fundamentally challenging. Identifying dynamics requires data assimilation (DA) to estimate system states, but DA requires an accurate dynamical model. To break this deadlock we present CODA, an end-to-end optimization scheme for jointly learning dynamics and DA directly from sparse and noisy observations. A neural network is trained to carry out data accurate, efficient and parallel-in-time DA, while free parameters of the dynamical system are simultaneously optimized. We carry out end-to-end learning directly on observation data, introducing a novel learning objective that combines unrolled auto-regressive dynamics with the data- and self-consistency terms of weak-constraint 4Dvar DA. By taking into account interactions between new and existing simulation components over multiple time steps, CODA can recover initial conditions, fit unknown dynamical parameters and learn neural network-based PDE terms to match both available observations and self-consistency constraints. In addition to facilitating end-to-end learning of dynamics and providing fast, amortized, non-sequential DA, CODA provides greater robustness to model misspecification than classical DA approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用稀疏观测数据的端到端学习对动力学和同化进行联合优化
将非线性动力学模型拟合到稀疏且高噪声的观测数据中是一项艰巨的任务。识别动力学需要数据同化(DA)来估计系统状态,但 DA 需要精确的动力学模型。为了打破这一僵局,我们提出了 CODA,这是一种端到端优化方案,可直接从稀疏和嘈杂的观测数据中联合学习动力学和数据同化。训练神经网络以进行数据精确、高效和并行的实时数据分析,同时优化动力学系统的自由参数。我们直接在观测数据上进行端到端学习,引入了一种新的学习目标,它将非滚动自回归动力学与弱约束 4Dvar DA 的数据和自一致性条款相结合。通过考虑多个时间步长中新的和现有的模拟组件之间的相互作用,CODA 可以恢复初始条件、拟合未知的动力学参数并学习基于神经网络的 PDE 项,以匹配可用观测数据和自一致性约束。除了促进端到端动力学学习和提供快速、摊销式、非序列 DA 之外,CODA 还提供了比经典 DA 方法更强的模型错误规范鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1