Reliability-based state parameter liquefaction probability prediction using soft computing techniques

IF 1.4 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Geological Journal Pub Date : 2024-08-21 DOI:10.1002/gj.5049
Kishan Kumar, Pijush Samui, S. S. Choudhary
{"title":"Reliability-based state parameter liquefaction probability prediction using soft computing techniques","authors":"Kishan Kumar,&nbsp;Pijush Samui,&nbsp;S. S. Choudhary","doi":"10.1002/gj.5049","DOIUrl":null,"url":null,"abstract":"<p>The state parameter (<i>ѱ</i>) accounts for both relative density and effective stress, which influence the cyclic stress or liquefaction characteristic of the soil significantly. This study presents a <i>ѱ-</i>based probabilistic liquefaction evaluation method using six soft computing (SC) techniques. The liquefaction probability of failure (<i>P</i><sub><i>L</i></sub>) is calculated using the first-order second moment (FOSM) method based on the cone penetration test (CPT) database. Then, six SC techniques, such as Gaussian process regression (GPR), relevance vector machine (RVM), functional network (FN), genetic programming (GP), minimax probability machine regression (MPMR) and multivariate adaptive regression splines (MARS), are used to predict <i>P</i><sub><i>L</i></sub>. The performance of these models is examined using nine statistical indices. Additionally, plots such as regression plots, Taylor diagrams, error matrix and rank analysis are shown to assess the SC model's performance. Finally, sensitivity analysis is performed using the cosine amplitude method (CAM) to assess the influence of input parameters on output. The current study demonstrates that SC models based on state parameter predict <i>P</i><sub><i>L</i></sub> effectively. RVM and MPMR models closely follow the GPR model in terms of performance, which is superior to the other models. Notably, two equations are generated using GP and MARS models to predict <i>P</i><sub><i>L</i></sub>. The results of the sensitivity analysis reveal the magnitude of earthquake (<i>M</i><sub><i>w</i></sub>) as the most sensitive parameter. The outcomes of this research will offer risk evaluations for geotechnical engineering designs and expand the use of state parameter-based SC models in liquefaction analysis.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 9","pages":"2638-2654"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5049","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The state parameter (ѱ) accounts for both relative density and effective stress, which influence the cyclic stress or liquefaction characteristic of the soil significantly. This study presents a ѱ-based probabilistic liquefaction evaluation method using six soft computing (SC) techniques. The liquefaction probability of failure (PL) is calculated using the first-order second moment (FOSM) method based on the cone penetration test (CPT) database. Then, six SC techniques, such as Gaussian process regression (GPR), relevance vector machine (RVM), functional network (FN), genetic programming (GP), minimax probability machine regression (MPMR) and multivariate adaptive regression splines (MARS), are used to predict PL. The performance of these models is examined using nine statistical indices. Additionally, plots such as regression plots, Taylor diagrams, error matrix and rank analysis are shown to assess the SC model's performance. Finally, sensitivity analysis is performed using the cosine amplitude method (CAM) to assess the influence of input parameters on output. The current study demonstrates that SC models based on state parameter predict PL effectively. RVM and MPMR models closely follow the GPR model in terms of performance, which is superior to the other models. Notably, two equations are generated using GP and MARS models to predict PL. The results of the sensitivity analysis reveal the magnitude of earthquake (Mw) as the most sensitive parameter. The outcomes of this research will offer risk evaluations for geotechnical engineering designs and expand the use of state parameter-based SC models in liquefaction analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用软计算技术进行基于可靠性的状态参数液化概率预测
状态参数(ѱ)考虑了相对密度和有效应力,它们对土壤的循环应力或液化特性有重大影响。本研究利用六种软计算(SC)技术提出了一种基于ѱ 的液化概率评估方法。液化破坏概率(PL)是根据锥入度试验(CPT)数据库,采用一阶第二矩(FOSM)方法计算得出的。然后,使用高斯过程回归 (GPR)、相关性向量机 (RVM)、功能网络 (FN)、遗传编程 (GP)、最小概率机回归 (MPMR) 和多变量自适应回归样条 (MARS) 等六种 SC 技术来预测液化破坏概率。这些模型的性能通过九项统计指标进行检验。此外,还展示了回归图、泰勒图、误差矩阵和等级分析等图表,以评估 SC 模型的性能。最后,使用余弦振幅法(CAM)进行了敏感性分析,以评估输入参数对输出的影响。目前的研究表明,基于状态参数的 SC 模型能有效预测 PL。RVM 和 MPMR 模型的性能紧随 GPR 模型,优于其他模型。值得注意的是,使用 GP 和 MARS 模型生成了两个方程来预测 PL。敏感性分析结果表明,震级(Mw)是最敏感的参数。该研究成果将为岩土工程设计提供风险评估,并扩大基于状态参数的 SC 模型在液化分析中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geological Journal
Geological Journal 地学-地球科学综合
CiteScore
4.20
自引率
11.10%
发文量
269
审稿时长
3 months
期刊介绍: In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited. The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.
期刊最新文献
Issue Information Issue Information Reply to Comment on “Singh R, Vadlamani R, Bajpai S & Maurya AS (2024) Strontium Isotope Stratigraphy of Marine Oligocene–Miocene Sedimentary Successions of Kutch Basin, Western India. Geological Journal, 1–20. DOI: 10.1002/gj.4961” Fabrics and Origin of Troctolites in the Keketoukeleke Ultramafic–Mafic Complex, South Altyn Tagh, Northwest China Comment on “Singh R, Vadlamani R, Bajpai S, Maurya AS (2024) Strontium Isotope Stratigraphy of Marine Oligocene–Miocene Sedimentary Successions of Kutch Basin, Western India. Geological Journal, 1–20. DOI: 10.1002/gj.4961”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1