Project Severe Weather Archive of the Philippines (SWAP). Part 1: Establishing a Baseline Climatology for Severe Weather across the Philippine Archipelago

Generich H. Capuli
{"title":"Project Severe Weather Archive of the Philippines (SWAP). Part 1: Establishing a Baseline Climatology for Severe Weather across the Philippine Archipelago","authors":"Generich H. Capuli","doi":"arxiv-2409.03211","DOIUrl":null,"url":null,"abstract":"Because of the rudimentary reporting methods and general lack of\ndocumentation, the creation of a severe weather database within the Philippines\nhas been difficult yet relevant target for climatology purposes and historical\ninterest. Previous online severe weather documentation i.e. of tornadoes,\nwaterspouts, and hail events, has also often been few, inconsistent, or is now\ndefunct. Many individual countries or continents maintain severe weather\ninformation through either government-sponsored or independent organizations.\nIn this case, Project SWAP is intended to be a collaborative exercise, with\nclear data attribution and open avenues for augmentation, and the creation of a\ncommon data model to store the severe weather event information will assist in\nmaintaining and updating the database in the Philippines. For this work, we\ndocument the methods necessary for creating the SWAP database, provide broader\nclimatological analysis of spatio-temporal patterns in severe weather\noccurrence within the Philippine context, and outline potential use cases for\nthe data. We also highlight its key limitations, and emphasize the need for\nfurther standardization of such documentation.","PeriodicalId":501166,"journal":{"name":"arXiv - PHYS - Atmospheric and Oceanic Physics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atmospheric and Oceanic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Because of the rudimentary reporting methods and general lack of documentation, the creation of a severe weather database within the Philippines has been difficult yet relevant target for climatology purposes and historical interest. Previous online severe weather documentation i.e. of tornadoes, waterspouts, and hail events, has also often been few, inconsistent, or is now defunct. Many individual countries or continents maintain severe weather information through either government-sponsored or independent organizations. In this case, Project SWAP is intended to be a collaborative exercise, with clear data attribution and open avenues for augmentation, and the creation of a common data model to store the severe weather event information will assist in maintaining and updating the database in the Philippines. For this work, we document the methods necessary for creating the SWAP database, provide broader climatological analysis of spatio-temporal patterns in severe weather occurrence within the Philippine context, and outline potential use cases for the data. We also highlight its key limitations, and emphasize the need for further standardization of such documentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
菲律宾恶劣天气档案项目(SWAP)。第 1 部分:建立菲律宾群岛恶劣天气基准气候学
由于报告方法简陋和普遍缺乏记录,在菲律宾建立一个恶劣天气数据库一直很困难,但对于气候学目的和历史意义来说,却很有意义。以前的在线恶劣天气记录,如龙卷风、水龙卷和冰雹事件,也往往很少,不连贯,或现已停用。在这种情况下,"SWAP 项目 "旨在成为一项合作活动,明确数据归属,并提供开放的扩充途径,而创建通用数据模型来存储恶劣天气事件信息将有助于维护和更新菲律宾的数据库。在这项工作中,我们记录了创建 SWAP 数据库所需的方法,对菲律宾恶劣天气发生的时空模式进行了更广泛的气候学分析,并概述了数据的潜在用途。我们还强调了该数据库的主要局限性,并强调了进一步规范此类文档的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing AI data-driven global weather models for climate attribution: An analysis of the 2017 Oroville Dam extreme atmospheric river Super Resolution On Global Weather Forecasts Can Transfer Learning be Used to Identify Tropical State-Dependent Bias Relevant to Midlatitude Subseasonal Predictability? Using Generative Models to Produce Realistic Populations of the United Kingdom Windstorms Integrated nowcasting of convective precipitation with Transformer-based models using multi-source data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1